INDEX

No. Subject

2-2 Parameters for Hurricane Flossy of 1956

2-4 Hurricane frequency and Correlations of Hurricane Characteristics for the Gulf of Mexico area PL 71

3-5 Hurricane Rainfall Estimates Applicable to Middle Gulf Standard Project Hurricanes, Tracks A, G, F, D and B, New Orleans Study, Zone B.

3-5a Hurricane Study - Hurricane Rainfall Criteria

7-15 Hurricane Data for New Orleans District - September 1915 Hurricane (superseded by HUR 7-37)

7-16 Hurricane Characteristics in the Vicinity of Lake Pontchartrain and New Orleans, La.

7-17 Hurricane of October 1893 in Louisiana

7-28 Wind Speed and Direction Charts for the Lake Pontchartrain, Chandeleur and Breton Sounds and Mississippi Delta Regions, September 29, 1915

7-37 Same as above for September 19, 1947

7-38 Curving Hurricane Tracks as related to Lake Pontchartrain

7-39 Revised Wind Fields Vicinity of Lake Pontchartrain, Hurricane of September 29, 1915

7-40 Louisiana hurricane of September 29, 1915,
 transposed to a critical track

7-42 Standard Project Hurricane Parameters and Isolines
 Mid-Gulf Coast U.S. Zone B, and 544 Lake Pontchartrain, La.
2-42a Standard Project Hurricane. Isolates for high speed of translation of the hurricane center, Zone B.

7-43 SPH Criteria & Isovel Patterns, Zones 1, 2, 3 (East Coast)

7-44 SPH Isovel Patterns, Norfolk area

7-45 SPH Parameters + Isovels, Zone 4 (Texas Coast)

7-45 A SPH Isovels for a High Speed of Translation

Zone C (Texas Coast)

7-51 Pressures, Wind Speeds and Directions in Hurricane Audrey near La. Coast, June 27, 1957

7-51a Addendum to 7-51

7-53 Pressures and Winds over the Gulf of Mexico in Hurricane Flossy, Sept. 21-24, 1956

7-61 Relationships between SPH Isovel Patterns and probable maximum events for the New Orleans area.

7-61a The above continued.

7-62 SPH Wind Fields for Track C, Critical for North shore of Lake Pontchartrain.

7-62a SPH Wind Field for Track C with a Rotated SPH pattern.

7-63 SPH Wind Fields for Track F with forward speed 5 knots, critical to Area I

7-64 SPH Wind Fields for Track D with forward speeds of 5 and 15 knots

7-65 SPH Wind Fields for Track B with forward speed of 5 knots.
7-76A Revised Surface Wind Charts for Hurricane Carla (1961)

7-82 Preliminary Analysis of Surface Winds in Hurricane Hilda, October 2-4, 1964

7-84 Standard Project Hurricane Wind Field Patterns (revised) to Replace Existing Patterns in NHRP Report No. 33, for Zones Band C Aug. 17, 1965

7-85 Ratio Chart to adjust Isovel Patterns in HUR 7-40 to level of updated SPH Patterns
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-87A

SUBJECT: Surface Winds (30 ft.) Over Lake Pontchartrain, La. During Passage of Hurricane Betsy, September 9-10, 1965

References: 1. HUR 7-87 dated December 20, 1965, "Surface Winds (30 ft.) Over Gulf of Mexico in Hurricane Betsy, September 9 and 10, 1965."

2. Letter from N. O. District to OCE dated September 29, 1965

This memorandum supplements reference 1 and provides the surface wind (30 ft.) over Lake Pontchartrain during Hurricane Betsy, 1965. It consists of seven charts beginning 1800 CST September 9, 1965 and, by 3-hourly intervals, ending 1200 CST September 10, 1965. These charts may be used with corresponding time charts of reference 1.

The isovel charts are analyzed at 10-knot intervals with 5-knot values (dashed lines) where needed. Smooth streamlines over the Lake show the wind direction.

This analysis is based primarily on the observed winds at South Base Unit, Lake Causeway; Weather Bureau Airport Station, Moisan Airport; and Huey Long Bridge. The latter two stations are reduced to over-water values at 30 ft. by standard relationships (figure 1-1 MHRP Report No. 39). More distant wind reports, and the pressure field are also guides to the wind speed profile along a radial from the storm center position.

Vance A. Myers
Chief, Hydrometeorological Branch
Office of Hydrology

Attachments
cc: 2 to OCE
4 sets of charts
SUBJECT: Hurricane Studies - Surface Winds over Lake Pontchartrain, La.
During Hurricane Betsy, September 1965

TO: Division Engineer
Lower Mississippi Valley Division

1. Reference is made to New Orleans District letter of 29 September 1965, subject, "Hurricane Study, Review of U.S. Weather Bureau Hydro-meteorological Branch Hurricane Memorandum," requesting isovel patterns and related data for Hurricane Betsy, 8-10 September 1965. The Hydro-meteorological Branch has completed preparation of surface wind charts over Lake Pontchartrain, Louisiana, during the passage of Hurricane Betsy. This supplements HUR 7-87 furnished by C&D letter of 22 December 1965, subject as above, and shows the wind fields in more detail over the lake.

2. The analysis consists of Memorandum HUR 7-87A with seven surface wind charts for the period 1800 CST 9 September 1965 to 1200 CST 10 September 1965. Two copies of the data are furnished directly to the New Orleans District.

FOR THE CHIEF OF ENGINEERS:

WILLIAMS H. JOHNSON
Chief, Engineering Division
Civil Works

Cy furnished:
District Engineer, New Orleans
25 Jan 66 (dupe)
HURRICANE BETSY
SURFACE WINDS (30 FT.)
SEPT. 9, 1965 1800 CST
ISOVELS (KT.)
HURRICANE BETSY
SURFACE WINDS (30 FT.)
SEPT. 9, 1965 2100 CST
ISOVELS (KT.)
HURRICANE BETSY
SURFACE WINDS (30 FT.)
SEPT. 10, 1965 0000 CST
ISOVELS (KT.)
HURRICANE BETSY
SURFACE WINDS (30 FT.)
SEPT. 10, 1965 0300 CST
ISOVELS (KT.)
HURRICANE BETSY
SURFACE WINDS (30 FT.)
SEPT. 10, 1965 0600 CST
ISOVELS (KT.)
HURRICANE BETSY
SURFACE WINDS (30 FT.)
SEPT. 10, 1965 0900 CST
ISOVEELS (KT.)
HURRICANE BETSY
SURFACE WINDS (30 FT.)
SEPT. 10, 1965 1200 CST
ISOVELS (KT.)
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-87

SUBJECT: Surface Winds (30 ft.) over Gulf of Mexico in Hurricane Betsy, September 9 and 10, 1965

Reference: Letter from New Orleans District to OCE dated September 29, 1965

Enclosed are four sets of copies of preliminary analyses of the wind (30 ft.) over the Gulf of Mexico and the Mississippi Delta region during the passage of Hurricane Betsy, 1965. A chart of the storm track is also included.

Each set contains 13 charts, covering the period from 0000 CST of the 9th to 1800 CST of the 10th at 3-hourly intervals except 6-hour intervals for the first three charts.

The isovals are for 10-knot intervals, continuous lines, except an occasional 5-knot isovel (dashed line) has been supplied to facilitate reading the values. For wind directions, the angle of incurvature is zero from the center of the storm outward to about 1.2 times the radius of maximum winds, R. Elsewhere, wind direction arrows, true at the arrow head, are provided. Direct linear interpolation between successive charts is generally valid.

Table 1 lists pertinent characteristics of Betsy.

Vance A. Myers
Chief, Hydrometeorological Branch
Office of Hydrology

Enclosures
 cct 2 to OCE
 4 sets of charts
Table 1

CHARACTERISTICS - "BETSY", SEPT., 1965

<table>
<thead>
<tr>
<th>Date/Time (CST)</th>
<th>P₀ (mb.)</th>
<th>Pₙ (mb.)</th>
<th>R (n. mi.)</th>
<th>Vₘ (kts.)</th>
<th>Vₕ Speed</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 0000</td>
<td>28.85</td>
<td>1012.5</td>
<td>20</td>
<td>100</td>
<td>89.5</td>
<td>16.6</td>
</tr>
<tr>
<td>0600</td>
<td>28.68</td>
<td>1013.0</td>
<td>23.5</td>
<td>100</td>
<td>92</td>
<td>12</td>
</tr>
<tr>
<td>1200</td>
<td>28.02</td>
<td>1014.0</td>
<td>27</td>
<td>101.5</td>
<td>91.5</td>
<td>16</td>
</tr>
<tr>
<td>1500</td>
<td>27.87</td>
<td>1013.0</td>
<td>28.5</td>
<td>105</td>
<td>95</td>
<td>15.5</td>
</tr>
<tr>
<td>1800</td>
<td>27.79</td>
<td>1012.0</td>
<td>30</td>
<td>106.5</td>
<td>96</td>
<td>16.3</td>
</tr>
<tr>
<td>2100</td>
<td>27.79</td>
<td>1012.5</td>
<td>32</td>
<td>106</td>
<td>95</td>
<td>17</td>
</tr>
</tbody>
</table>

10 0000	*	*	*	*	*	16.5	318
0300						13.7	320
0600						13.4	321
0900						13.5	339
1200						12.7	355
1500						11.8	358
1800						11.8	5

*Storm center inland.

Legend:
- P₀ = central pressure
- Pₙ = average peripheral pressure
- Vₘ = maximum sustained 30 ft. surface windspeed
- RF = Right front quadrant
- LR = Left rear quadrant
- Vₕ = forward velocity of hurricane center; direction is point of compass toward which it is moving
- R = radius of maximum winds
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-85A

SUBJECT: Ratio Chart to Adjust Isovel Patterns in HUR 7-40 to Level of Updated SPH Patterns

References: 1. Letter to Hydromet Branch from OCE, dated January 20, 1966
2. MEMORANDUM HUR 7-40, "Louisiana Hurricane of September 29, 1915, Transposed to a Critical Track."
3. MEMORANDUM HUR 7-84, "Standard Project Hurricane Wind Field Patterns (revised) to Replace Existing Patterns in NHRP Report No. 33, for Zones B and C."

Herein presented is a chart of ratio lines which, used as factors, will adjust the wind speed values in the isovel charts in HUR 7-40 to correspond to wind speed values (at 30 ft.) in the updated SPH moving along the same track as that included in HUR 7-40.

Charts of the updated SPH isovel fields are presented in HUR 7-84 (ref. 3). That memorandum also includes a discussion of the considerations leading to the revisions in the SPH isovel fields in Zones B and C in the Gulf of Mexico (approximately from Apalachicola, Fla., to Brownsville, Tex.).

To adjust any isovel pattern in HUR 7-40 place the figure over the adjustment chart, with centers corresponding and with direction of motion of the storm aligned with direction arrow M. Multiply the wind speed at any point on the pattern with the ratio at that point. Linear interpolation between ratio isolines is valid. The area within the 1.00 ratio line has a value of 1.00 throughout (i.e., the speed values from storm center out to a distance of the radius of maximum wind are not changed).

Vance A. Myers
Chief, Hydrometeorological Branch

Attachments:
cc: 2 to OCE
4 copies of chart
TO USE: PLACE CENTER OF ISOLEVEL CHART OVER CENTER OF RATIO CHART. ALIGN ARROW "A" ALONG DIRECTION OF MOTION OF STORM. MULTIPLY WIND SPEEDS BY THE INDICATED RATIOS.

Ratio Chart to adjust isolevels of 1915 Hurricane Transposed (HUR 7.40) to revised SFL isolevel (HUR 7.84)
\[a := 1 \]
\[\theta := 0, \frac{\pi}{24} \ldots 2 \pi \]
\[f(\theta) := a \cdot \theta \]

Archimedean spiral
SUBJECT: Hurricane Study, Review of U.S. Weather Bureau Hydrometeorological Branch Hurricane Memorandums

TO: Division Engineer
 Lower Mississippi Valley Division

1. Reference is made to New Orleans District letter of 29 September 1965, requesting review of hurricane memoranda prepared by the Weather Bureau, and to OCE 1st Indorsement thereto.

2. The Hydrometeorological Branch has completed review of memoranda HUR 7-62, 7-62A, 7-63, 7-64 and 7-65. Transmitted herewith is Memorandum HUR 7-85 which gives a means of adjusting the isovol patterns in the memoranda listed above to reflect the revisions in the basic SPH isovel patterns presented in HUR 7-84. A sample of an adjustment is also included.

FOR THE CHIEF OF ENGINEERS:

WENDELL E. JOHNSON
Chief, Engineering Division
Civil Works

1 Incl
HMB Memo HUR 7-85,
3 Nov 65 (dupe)

LMVED-PH (OCE 8 Nov 65)
1st Ind
DA, Lower Miss. Valley Div, CE, Vicksburg, Miss. 39181 16 Nov 65

TO: District Engineer, New Orleans District, ATTN: LMNED-H

1 Incl
dupe cy wd
H/2 7-85 Removed and

Placed in Binder Aug 1976
 SUBJECT: Hurricane Studies - Surface Winds over Gulf of Mexico in Hurricane Betsy, 9-10 September 1965

TO: Division Engineer
 Lower Mississippi Valley Division

1. Reference is made to New Orleans District letter of 29 September 1965 subject, "Hurricane Study, Review of U.S. Weather Bureau Hydrometeorological Branch Hurricane Memorandum," requesting isovall patterns and related data for Hurricane Betsy, 8-10 September 1965. The Hydrometeorological Branch of the Weather Bureau has completed preparation of the surface wind fields over the Gulf of Mexico and the Mississippi Delta region during the passage of Hurricane Betsy, two copies of which are furnished directly to the New Orleans District.

2. The study consists of NMS Memorandum HUR 7-87, a storm tracks chart and 13 wind charts, covering the period from 0000 hours CST 9 September to 1800 hours CST 10 September at 3-hour intervals except 6-hour intervals for the first three charts.

FOR THE CHIEF OF ENGINEERS:

1 Incl
 HUR 7-87 (dupe)

Copy furnished:
 Dist Engr, New Orleans
 w/1 Incl
 HUR 7-87 (dupe)
TO: Mr. A. L. Cochran, Civil Works
 Office of Chief of Engineers
 Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: Memorandum HDU 7-65, SPH Wind Fields for Track B with forward speed
 of 5 knots

Hereewith is transmitted the subject memorandum which furnishes isovel
charts for track B of the New Orleans Hurricane Study.

Charles S. Gilman, Chief
Hydrometeorological Section

2 cc with att. to OCE
2 cc with att. to BEB
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-65

FROM: Hydrometeorological Section

SUBJECT: SPH Wind Fields for Track D with Forward Speed of 5 Knots

References: 1. Memorandum from OCE to HMB, 17 August 1959 and Conference at OCE 11-13 August 1959, Subject, New Orleans Hurricane Studies.

2. HUR 7-62, SPH Wind Fields for Track C (revised), Critical for North Shore of Lake Pontchartrain, September 8, 1959.

This memorandum presents wind directions and speeds according to Standard Project Hurricane criteria for track D, critical for Grand Isle and the portions of Area II west of the Mississippi as specified in reference [1]. The SPH over-water pattern was rotated 36 degrees clockwise from the track C direction given in the over-water pattern of reference [2]. Filling, shoreline and friction adjustments were made in a similar manner as the procedure used in HUR 7-62.

Isocel charts are enclosed at 2-hour intervals from -10 hours to +4 hours and at 1-hour intervals from +4 hours to +17 hours (the times are hours before and after the hurricane center crossed the coast).

Also enclosed are a track map and a spiral. The spiral is used for determining wind directions as described in reference [2].

In the map legends, R = radius of maximum winds in nautical miles and F. S. = forward speed of hurricane center in knots.

Charles S. Gilman, Chief
Hydrometeorological Section

2 cc with att. to OCE
2 cc with att. to HMB
SUBJECT: Hurricane Study, Meteorological Criteria, New Orleans District

TO: Division Engineer
 U. S. Army Engineer Division, Lower Mississippi Valley
 Vicksburg, Mississippi

1. In accordance with paragraph 1b of inclosure No. 3 of notes on conference held in OCE on 11-13 August 1959, subject, "Hurricane Protection Studies (PL 71), New Orleans District", the Hydrometeorological Section of the Weather Bureau has furnished a memorandum for the meteorological criteria specified therein. Two copies of the memorandum, HUR 7-65, subject, "SHF Wind Fields for Track B with Forward Speed of 5 Knots", dated 21 October 1959, are inclosed.

2. Duplicate copies of the memorandum have been furnished the Beach Erosion Board. The remaining data outlined in inclosure No. 3 of the conference notes will be forwarded as soon as received from the Weather Bureau.

FOR THE CHIEF OF ENGINEERS:

1 Incl (amp)
 HRS Memo HUR 7-65,
 21 Oct 59

F. B. SLIGHTER
Chief, Engineering Division
Civil Works

LMVGK

1st Ind

U. S. Army Engr Div, Lower Mississippi Valley, Vicksburg, Miss.

TO: District Engineer, U. S. Army Engr Dist, New Orleans

1 Incl
n/c
MEMORANDUM TO CORPS OF ENGINEERS

MEMORANDUM

FROM: Hydrometeorological Section

SUBJECT: SFH Wind Fields for Track B with forward speeds of 5 and 15 knots

References: 1. Memorandum from OCM to UWB, 17 August 1959 and Conference at OCM 11-13 August 1959, Subject, New Orleans Hurricane Studies

2. HMR 7-62, SFH Wind Fields for Track C (revised), Critical for North Shore of Lake Pontchartrain, September 9, 1959

This memorandum presents wind directions and speeds according to Standard Project Hurricane criteria for track B, critical for north coast of Grand Isle and Pointe-a-la-Hache as specified in reference [A]. The SFH over-water pattern was rotated 58 degrees counterclockwise from the track C direction given in the over-water pattern of reference [B]. Shore line and friction adjustment were made in a similar manner as the procedure used in HMR 7-62. Since the hurricane center crossed the lower Mississippi Delta for only a brief period, no filling adjustment was made and the isovels charts are applicable to both 5 and 15 knot forward speeds, e.g., the -6 hour map with a forward speed of 5 knots is the same as the -2 hour map with a forward speed of 15 knots.

Isoval charts are enclosed at 4 hour intervals for the 5 knot forward speed from 24 hours to -12 hours and at 2 hour intervals from -12 hours to -6 hours (the time before and after the hurricane center crossed the coast).

Also enclosed are a track map and a spiral. The spiral is used for determining wind directions as described in reference [B].

In the map legends, R.ext = radius of maximum winds in nautical miles and F.s. = forward speed of hurricane center in knots.

October 7, 1959

Charles S. Gilmam, Chief
Hydrometeorological Section

2 cc with att. to OCM
2 cc with att. to UWB
SUBJECT: Hurricane Study, Meteorological Criteria, New Orleans District

TO: Division Engineer
U. S. Army Engineer Division, Lower Mississippi Valley
Vicksburg, Mississippi

1. In accordance with paragraph 1b of inclosure #3 of notes on conference held in OGE on 11-13 August 1959, subject, "Hurricane Protection Studies (FL 71), New Orleans District", the Hydrometeorological Section of the Weather Bureau has furnished a memorandum for the meteorological criteria specified therein. Two copies of the memorandum, HUR 7-64, subject, "SEH Wind Fields for Track D with forward speeds of 5 and 15 knots", dated 7 October 1959, are inclosed.

2. Duplicate copies of the memorandum have been furnished the Beach Erosion Board. The remaining data outlined in inclosure #3 of the conference notes will be forwarded as soon as received from the Weather Bureau.

FOR THE CHIEF OF ENGINEERS:

F. B. SLIGHTER
Chief, Engineering Division
Civil Works

1 Incl (dup) HNS Memo HUR 7-64, 7 Oct 59

LMVCK 1st Ind
U. S. Army Engr Div, Lower Mississippi Valley, Vicksburg, Miss.

TO: District Engineer, U. S. Army Engr Dist, New Orleans

G.B.D.
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-63

FROM : Hydrometeorological Section

SUBJECT : SPH Wind Fields for Track F with Forward Speed 5 Knots,
Critical for Area I (Lake Borgne, Rigolets and south and
north shore of Lake Pontchartrain)

References: 1. Memorandum from OCE to HMS, 17 August 1959 and Con­
ference at OCE, 11-13 August 1959, Subject, New Or­
leans Hurricane Studies.

2. HUR 7-62, SPH Wind Fields for Track C (rened)
Critical for North Shore of Lake Pontchartrain,
September 8, 1959.

This memorandum presents wind directions and speeds according to
Standard Project Hurricane criteria for track F, critical for Area I (Lake
Borgne, Rigolets and the south and north shore of Lake Pontchartrain) for
a forward speed of 5 knots (as specified in reference [11]). The SPH over­
water pattern was rotated 18 degrees counter-clockwise from the track C
direction given in the over-water pattern of reference [22]. Filling, shore
line and friction adjustments were made in a similar manner as the procedure
used in HUR 7-62.

Isovel charts are enclosed at 2-hour intervals from -5 hours to +1
hours, at 1-hour intervals from +1 hours to +14 hours and at 2-hour inter­
vals from +14 hours to +18 hours (the times are hours before and after the
hurricane center crossed the coast.)

Wind directions at any time and location can be determined from the
enclosed spiral which is a copy of the spiral enclosed with HUR 7-62. It
is used by placing the "X" mark over the hurricane center and rotating the
spiral until it is superimposed upon the point at which the wind direction
is desired. The wind direction at this point is tangent to the spiral and
blows counter-clockwise around the hurricane center.

In the map legends, R. = radius of maximum winds and F. S. = forward
speed of hurricane center.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments
cc: 2 to OCE with Att.
2 to BEB with Att.
TO: Mr. A. L. Cochran, Civil Works
 Office of Chief of Engineers
 Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: HUR 7-62A, SFH Wind Field for Track C with a Rotated SFH Pattern

Herewith is transmitted the isovel chart to supplement the track C isovel charts sent under HUR 7-62. This is in response to a conversation between Mr. Bunn of your office and Mr. Goodyear of this office September 10, 1959.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments
cc: C to CCR with attachments
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-62A

FROM: Hydrometeorological Section

SUBJECT: SPM Wind Field for Track C with a Rotated SPM Pattern

Reference: HUR 7-62, SPM Wind Fields for Track C (revised) Critical for North Shore of Lake Pontchartrain, September 8, 1959

The question has been raised that an orientation of the SPM isovels pattern different from that used in HUR 7-62 might give a stronger onshore wind component along the north shore of Lake Pontchartrain at a later critical time. The enclosed pattern was obtained by rotating the over-water SPM pattern 90 degrees counterclockwise from the orientation of the pattern used with track C (shown on the over-water map of HUR 7-62) and applying filling and friction adjustments.

A comparison of this +18 hour map with the +14 hour (critical time) map from HUR 7-62 indicates a considerably weaker wind field over Lake Pontchartrain on the +18 hour map. The north shore of Lake Pontchartrain has been assumed to extend from A through C as shown on the +18 hour map.

The following general conclusions seem evident:

1. The +14 hour map enclosed with HUR 7-62 gives a larger overall onshore component from A through C.

2. The +18 hour map enclosed with this memorandum gives a smaller overall onshore component with a much smaller component along AB, but with a larger onshore component along BC.

Charles S. Gilman, Chief
Hydrometeorological Section

cc: 4 to OCE with attachments
TO : Mr. A. L. Cochran, Civil Works
Office of Chief of Engineers
Corps of Engineers

FROM : Hydrometeorological Section

SUBJECT: MEMORANDUM HUR 7-62, SPH Wind Fields for Track C (unspecified)
Critical for North Shore of Lake Pontchartrain

Herewith is transmitted the subject memorandum which furnishes
isovel charts for track C of the New Orleans hurricane study.

Charles S. Gilman, Chief
Hydrometeorological Section

cc with att. to OCE
cc with att. to BEB
addition to a track map, mower super have been prepared at 2-hour intervals.

It appears from the chart that the hurricane center crossed the coastline.

For the forecast period of 5 hours the chart shows the track as

10/16

Sight Sound.

Each station where a damage above the excerpt to accentuate where over Black.

Each station where damage above the excerpt to accentuate where over Black.

Each station where damage above the excerpt to accentuate where over Black.

Each station where damage above the excerpt to accentuate where over Black.

Each station where damage above the excerpt to accentuate where over Black.

Each station where damage above the excerpt to accentuate where over Black.

This measurement process was direction and speed and speeds according to

Area Chart

5. Measurement and takeout intensity of Lake Pontchartrain.

7. Measurement and takeout intensity of Lake Pontchartrain.

Measurement: 1. Measurement from 0 to 0, 17 August 1955, subject.

Measurement: 2. Measurement from 0 to 0, 17 August 1955, subject.

Subject: 3. Wind record for those c (except) central for month where

From: "Hydrogeological Forecast"

Report: 0-6, 12

September 6, 1955

Washington 22

Weather Bureau

United States Department of Commerce
2.

from -4 hours to +20 hours and for the hour before and after critical
time.

For the forward speed of 15 knots the critical time is +5 hours. A
track map and isovel maps from -1 to +5 hours at two hour intervals and
for the hour before and after critical time have been prepared.

Wind directions at any time and location can be determined from the
enclosed spiral. In accordance with HMR 7-42, reference [3], the overlays
were prepared with an angle of incurrence of 20 degrees out to the radius
of maximum winds (30 nautical miles), 20-25 degrees from the radius of
maximum winds to 1.2 times the radius of maximum winds (30-36 nautical
miles) and 25 degrees incurrence beyond this point. The spiral is worked
for the 1:488,596 map base. In order to use the spiral, the "X" mark is
placed over the hurricane center and the spiral is free to rotate. The
wind direction at a given point is tangent to the curve at that point.

Notate the spiral until the spiral intersects the point from which the
wind direction is desired. HRS 10.001.54

1. **SPN Pattern.** The SPN pattern for a medium speed of translation
(10 knots) and a large radius of maximum winds (30 nautical miles) is
[3] is applicable to forward speeds of 5-20 knots as stated in the refer-
ence. This pattern is the basis of all isovel charts for both forward
speeds. The isovel pattern was aligned so that the radius of maximum
winds gave the strongest onshore component at the critical time. A copy
of this basic pattern for determining over-water wind speeds where not
shown on the other charts is enclosed.

2. **Filling adjustment.** After the hurricane center crossed to
the coast, the SPN map was adjusted for filling according to the time adjust-
ment factors given in Table 1 of HMR 7-42 [4] and explained in HMR 7-36
[3]. Beyond 14 hours the adjustment factors were extrapolated linearly
to 20 hours.

3. **Shore Line Adjustment.** Using topographic maps of the Lake Pontchar-
train-Mississippi Delta region and with a knowledge of onshore wind speeds,
a rough estimate was made of the land-sea boundary as flooding occurred and
this approximate shore line was used to make an adjustment for friction.

4. **Friction Adjustment.** Winds were reduced due to friction rapidly
at the coast to 90% of the over-water speed for wooded and built-up areas
and 85% for marshy areas. Greater reductions were used further inland. A
similar procedure was used for constructing land-to-water transition zones.

In the map legends, Rₘ radius of maximum winds and v forward speed
of hurricane.

Charles S. Gilman, Chief
Hydrometeorological Section
TO: Mr. A. L. Cochran, Civil Works
Office of Chief of Engineers
Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: Memorandum HUR 7-61a, "Relationships Between SFH Isoval Patterns and Probable Maximum Events for the New Orleans Area, continued"

The reference memorandum is transmitted, discussing the question of effect of recent hurricanes on probable maximum hurricane intensity guidelines.

Vance A. Myers
Chief, Hydrometeorological Section

cc: 2 to OCE
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-61a

FROM : Hydrometeorological Section

SUBJECT : "Relationships Between SFH Isovel Patterns and Probable Maximum Events for the New Orleans Area, continued"

References: (1) HUR 7-61, "Relationships Between SFH Isovel Patterns and Probable Maximum Events for the New Orleans Area"

(2) NWEF Report No. 33, "Meteorological Considerations Pertinent to Standard Project Hurricane, Atlantic and Gulf Coasts of the United States"

"Carla", 1961, was reported to be one of the largest and most severe of hurricanes to hit the Gulf Coast area during the last several decades. The question has been raised whether this storm calls for any changes in probable maximum hurricane criteria in reference (1).

Pressure

"Carla" had a central pressure of 27.50 inches just before entering the coast near Port O'Connor, Texas. Extrapolating this value from its point of occurrence to the latitude of New Orleans, using figure 4-3 of HUR 2-1 yields a central pressure index of 27.72 inches, considerably higher than the 26.90 inches proposed for the FMH at this latitude in reference (1).

Wind

Two opposing considerations apply.

The wind in a probable maximum hurricane is derived primarily from the CPI, using empirical relations from past large storms. The three most recent severe hurricanes in the Gulf of Mexico, Carla, Donna of 1960 on the west coast of Florida, and Audrey of 1957 in Texas-Louisiana, all appear to have had somewhat stronger maximum sustained wind speeds in comparison with their respective CPI's than relations previously used.
would call for. All were moving at moderate forward speeds.

Only a preliminary appraisal of readily available data has been made for Donna and Carla, but it seems likely that analysis of these two severe storms will call for some increase in winds to be expected for a given CPI for severe hurricanes in the Gulf region. Tentatively, a factor of 1.25 is proposed to convert the moderate speed of translation SPH wind patterns of reference (2) and previous memoranda to FSH, instead of 1.14.

The other consideration relates to the effect of speed of forward motion on a FSH. In reference (2) and previous memoranda speeds on the right-hand side of the track are increased by approximately one-half the speed of forward motion for fast-moving SPH's. This increase is not considered fully applicable to probable maximum hurricanes, as increasing forward motion yields little or no increase in energy available to produce wind. The moderate-speed-SPH X 1.25 wind field proposed above applies to a FSH of any forward speed.

(If the old factor of 1.14 has been applied to high speed of translation SPH patterns, this also yields a pattern representative of FSH on the more severe side of the storm, being of about the same intensity as the wind pattern proposed above).

Conclusion

No change in CPI for probable maximum hurricanes. Tentatively increase factor to convert SPH winds of NMRP Report No. 33 to probable maximum level to 1.25, but apply to moderate speed of translation SPH patterns only.

Vance A. Myers
Chief, Hydrometeorological Section

cc: 2 to OCE
TO: Mr. A. L. Cochran, Civil Works
Office of Chief of Engineers
Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: Memorandum HUR 7-61, dated August 21, 1959, Relationships Between SPH Isovel Patterns and Probable Maximum Events for the New Orleans Area

Enclosed is the subject memorandum which deals with some considerations regarding the characteristics of a Probable Maximum Hurricane (PMH) at the latitude and zone of coastal Louisiana and coefficients for converting the generalized SPH to a PMH.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments
cc: 5 with att. to OCE
 2 with att. to BEB
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-61

FROM : Hydrometeorological Section

SUBJECT : Relationships Between SPH Isovel Patterns and Probable Maximum Events for the New Orleans Area

References: (1) HHS Memorandum HUR 7-59, March 3, 1959, Relationships between SPH Isovel Patterns and Probable Maximum Events for Lower New England Area.

(2) Corps of Engineers, Jacksonville District Partial Definite Project Report, Central and Southern Florida Project for Flood Control and Other Purposes, Part IV, Lake Okeechobee and Outlets, Section 2--Design Memorandum, Hurricane Winds over Lake Okeechobee.

(3) HHS Memorandum HUR 2-1, June 18, 1957, Frequency of Central Pressure Indices along Atlantic Coast.

(5) HHS Memorandum HUR 2-1, June 18, 1957, Frequency of Central Pressure Indices along Atlantic Coast.

The Probable Maximum Hurricane (PMH) discussed here is conceived as a storm possessing a combination of characteristics that will produce the physical maximum water height (surge) superimposed on the astronomical tide. These characteristics are then related to those of the SPH already developed for Zone B (reference [6]).

The parameters that determine surge height are essentially of two types, physiographic and meteorologic, and only the latter will be discussed here. Since the optimum forward speed of a PMH is dependent on
physiographic factors, a range of forward speeds is given.

The approach in determining the PMH characteristics here is similar to that in Memorandum HUR 7-59. All "quotes", therefore, refer to HUR 7-59.

Physical Considerations

Kinetic energy. "The kinetic energy of the winds in a hurricane is produced by air flowing across the isobars toward lower pressure. In order that the total kinetic energy in the air column making up the hurricane may remain constant against the dissipating effects of friction, or increase, there must be ascending air that is warmer than the volume-compensating descending air. Ordinarily, in the atmosphere, an ascending current becomes colder than its surroundings and a descending current becomes warmer than its surroundings. This condition tends to inhibit the development of kinetic energy in the absence of a pre-existing horizontal temperature difference."

The exception to this general rule occurs when the lower layers are very warm and moist and the upper layers relatively cool. The release of latent heat when the lower air rises compensates for the adiabatic cooling enough to assure that it remains warmer than the sinking air, thus giving a kinetic-energy-producing system. The atmosphere is then referred to as being convectively unstable.

Because the sea surface is most effective as a heat source from June through October, the convective instability is most pronounced during this season. The strength of the effective heat source depends on sea-surface temperature and insolation, relatively fixed factors. The development of extreme instability is inhibited by the dissipative action of local convection and this action, in turn, depends, in part, on fixed physical properties of the air.

"Therefore the maximum convective instability that could accumulate and be available to drive a great hurricane of the maximum probable category is not extraordinarily in excess of what must have been present for severe past hurricanes.

Central Pressure. Apparently, the one most significant characteristic of a hurricane is its central pressure, and many empirical relations between this and other characteristics of the hurricane (at least in its mature stages) have been devised. Taken together with pressures around the periphery of the storm the central pressure sets a limit on how much kinetic energy can be concentrated in an area; as the storm moves away from the Tropics, and consequently farther from a good source of warm moist air, the central pressure rises somewhat and the radius of maximum wind may increase."
We may estimate the lowest probable p for a hurricane in the Tropics on the basis of simple hydrostatic reasoning, using certain assumptions of maximization and utilizing the idea of subsidence in the eye.

Hydrostatic computation. Assume a hurricane extending to the 100-mb level (a mean height of 54,410 feet in August), with a surface temperature of 78°F, saturated. Assume now a condition in which this saturated air rises moist adiabatically around the eye to the 100-mb level. Air at the 100-mb level having the same temperature as the air brought up moist adiabatically from the surface descends dry adiabatically in the eye. The vertical temperature distribution is now such that hydrostatic computations show a surface pressure of 25.50 inches of mercury.

Limitations. Certain physical limitations which militate against such an extreme low pressure as described above are immediately apparent: (1) ascents and descents of air are less complete and clear-cut than was assumed in the above example. For example, studies in actual hurricanes made by Palmen (1948) indicate that air at the 400-mb level in the eye appears to have descended from the 200 mb while lower down the vertical displacements are even smaller; (2) any process which assumes large amounts of descending air must of necessity be an energy-consuming process. These limitations suggest that a central pressure of 25.50 inches is probably below the lowest likely to occur.

The lowest pressure ever recorded (in a typhoon) was 26.185 inches. There is no reason to suppose this was the lowest that nature could possibly produce. It is concluded, therefore, that a value near 26.00" is typical for the FNM value in the Tropics.

Statistical considerations

Points of reference. The following references and actual occurrences must also be considered in a discussion of the FNM for the New Orleans Zone: (1) FNM for Lake Okeechobee, reference /2/; (2) Generalized SPM studies, reference /6/; (3) minimum pressure of 26.35 inches in the Florida Keys storm of September 2, 1935; (4) lowest sea-level pressure ever observed of 26.185 inches on August 18, 1927, 460 miles east of Luzon, near 16°N; and (5) minimum pressure of 26.43 inches in a mature typhoon near 20°N, 135°E, in August 1951, reference /4/.

Extrapolation of tropical central pressures northward. One method of estimating the central pressure for a FNM at the New Orleans Zone is to extrapolate northward to the 29°N latitude the lowest central pressures observed in the various tropical hurricanes mentioned in the preceding paragraph. This extrapolation is accomplished using figure 4-B of
HUR 2-I (reference /2/). This extrapolation yields a lowest central pressure of 27.10 inches at 29°N.

The Pacific typhoons and physical considerations just discussed suggest the possibility that a lower value is reasonable. Similar extrapolation yields a lowest value of about 27.00 inches.

Further considerations. Meteorologically, the entire Gulf of Mexico may be said to be in the Tropics during a great part of the hurricane season. By this we mean that the air and water surface have essentially the same characteristics as, say, the Caribbean. One might then ask, "What is the probability of an occurrence such as that of the 1935 Florida Keys (central pressure = 26.35 inches) at coastal Louisiana?"

Figure 1, appended, shows plots, by rank, of all the available central pressures at the coast lines of hurricanes that entered the coast in Florida (line F) and anywhere in U. S. coastal Gulf (line G). Only central pressures of 26.50 inches and below are shown. The straight lines have been fitted by eye to the data--(the Florida Key hurricane, point A, not considered in drawing the straight line for F).

Assume that if a storm such as the Labor Day Hurricane were to occur on the Louisiana Coast it would occupy the same relative position to the left end of line G as A (the Labor Day case) has to line F. This leads to a value of about 26.80 inches.

This higher value for an extreme case is meteorologically and physiographically reasonable; storms along the northern Gulf are more subject to the effects of drier air from the continent and to the effects of upper troughs moving in from the north and west.

On September 21, 1934, a minimum central pressure of 26.93 inches was recorded in a typhoon that hit Japan near 33°N latitude. Again, we are forced to assume that any value of central pressure that has occurred at 33°N latitude could also occur to the south, at 29°N latitude.

Choice of FMI central pressure. The Labor Day Hurricane in the Florida Keys is so far out of line from the rest of the data that its probability of occurrence is very likely no better than once in a thousand years. Therefore the value of 26.80 inches at the Louisiana Coast is not suggested in the FMI considerations unless an extremely low probability value is desired.

The other considerations discussed, plus the case at 33°N mentioned above, yield a lowest value of 26.90 inches (assuming nature is capable of a value slightly lower than has ever occurred, taking latitude and other factors into consideration).
This central pressure would yield wind speeds that are about 114% of the SPH wind speeds.

Radius of maximum winds. "Work done in examining hurricane characteristics to determine generalized criteria for the SPH indicates some tendency for the lower central pressures to be associated with smaller radii of maximum winds. This tendency is too slight to be a reliable guide in MPH criteria. The radius of maximum wind for the MPH should be the same as or slightly larger than that of the large radius SPH."

Forward speed. Forward speeds from about 5 to 30 or 35 knots are acceptable for the MPH. Speeds above this would imply inflow conditions resulting in higher central pressures.

Conclusions. It is considered that the most reasonable coefficient to convert the SPH isovel to an MPH is 114%. For example, the 100 mph SPH isovel becomes 114 mph, etc.

For the radius of maximum winds, it is suggested that a value equal to, or slightly larger than, that of the SPH be used.

Any forward speed of translation between 5 and 35 knots is meteorologically acceptable.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments

cc: 5 with att. to OCE
 2 with att. to BBR
Fig. 1. Graph of rank of central pressures at coast for hurricanes less than 28.50 inches (1890 - 1957) for Florida (F) and Gulf Coast (G).
MEMORANDUM TO THE CORPS OF ENGINEERS

HUR 7-53

FROM: Hydrometeorological Section

SUBJECT: Pressure and Winds over the Gulf of Mexico in Hurricane Flossy, September 23-24, 1956

REFERENCE: OCE Memorandum, March 17, 1958

Introduction

This study of wind and pressures in the hurricane, as it approached and crossed the Mississippi River Delta during the period from 1800 CST September 23 to 1230 CST September 24, 1956, was made as an aid in computing storm surge hydrographs along the mid-Gulf coast.

Track

The track of Hurricane Flossy on September 23 and 24, 1956 with hourly positions of the center indicated is shown in figure 1. The storm moved off the Yucatan Peninsula into the Gulf of Mexico on September 22. It moved northward across the Gulf during the 23rd then recurved to the northeast just off the Louisiana coast. The center crossed the Mississippi River Delta between Buras and Burrwood, La. between 0300 CST and 0600 CST September 24. Continuing northeastward, the center moved inland near Valparaiso, Fla. about 1700 CST September 24.

Pressure

Central pressure. The storm deepened slowly as it moved northward across the Gulf of Mexico. At about 1600 CST September 23 when the storm was centered 130 nautical miles south of New Orleans, La., a reconnaissance flight reported a central pressure of 29.06 inches. On the early morning of the 24th at the time the hurricane center moved across the Mississippi Delta, the central pressure was computed to be near 28.80 inches. This value was based on the minimum pressure of 29.03 inches reported at Burrwood as the center passed to the north of the station, and a pressure observation of 28.94 inches from a ship that passed within the eye of the storm about 0900 CST September 24. Later on the 24th, aircraft reconnaissance reported a minimum pressure of 28.76 inches when the storm was centered just off Pensacola, Fla. At 1725 CST when the center was crossing the coast, a drudge within the eye at Destin, Fla. also observed a minimum pressure of 28.76 inches.
Asymmetry of the pressure field. The pressure distribution around the hurricane was asymmetrical. The strongest pressure gradient near the center, but beyond the radius of maximum wind, was in the forward sector. The pressure gradient was weakest south of the center. In the right sector of the storm, at a distance of 100 miles from the center and beyond, the pressure gradient was greater than the gradients that occurred at this distance in the other directions (figure 2). The proximity of the subtropical High to the northeast probably contributed to the larger pressure gradient in this sector at a distance from the center.

Pressure profiles. Figure 2 shows pressure profiles in the forward sector of the storm at 1830 CST September 23 using the reconnaissance observation of 29.06 inches at 1600 CST as the minimum pressure and for the period from 0000 CST to 0930 CST September 24 when the storm had deepened and developed hurricane force winds. Beyond 35 miles from the center the two visually-fitted curves correspond well to pressure profiles derived from an exponential formula indicated by dashed lines. Ships observations of pressure in each quadrant for the period from 1200 CST September 23 to 0000 CST September 24 when the storm was moving north to northeastward are plotted in figure 2 to indicate the difference in the pressure distribution in the right sector from the distribution in the forward sector. Observations at Burrwood and New Orleans are also plotted on the chart. A curve has been visually fitted to the observations in the right sector to indicate the probable average slope of the pressure profile in that sector.

Wind

Data. Isovel patterns were constructed from ship observations of wind speed, wind speeds observed at coastal stations and adjusted to 30-ft over-water speeds, and over-water wind speed profiles computed from pressure profiles in the forward sector of the storm.

Composite wind speed chart. To determine the features of the wind field that persisted over a period of time for use with the wind speeds reported at 3-hourly intervals by the ships and coastal stations, a composite chart of wind observations was constructed and analyzed (figure 3). A number of ship reports and wind speeds observed at coastal stations and adjusted to 30-ft over-water speeds for the period from 1200 CST September 23 to 1230 September 24 were plotted showing the position of the observation from the storm center in relation to the direction of forward motion. Isoveles were drawn to the data with extra weight being given to the observations made at 0000 CST September 24 and later.

Considerable smoothing was necessary in analyzing the ship reports because large variations in speed were frequently reported within a small area. These variations may have resulted from squalls in the area which affected only part of the ships, from observers overestimating or under-estimating the wind speed, differences in the actual times of the observations, and transmittal errors.
The maximum isovals in the right side of the storm were based largely on the autographic wind speed records at Burrwood, La. In the left sector, the maximum isovals where the data were lacking are based on 30-ft over-
water speeds computed from pressures, (figure 4). The 0000-0930 CST September 24 mean pressure profile in the forward sector (figure 2) was used for this purpose.

Wind speed distribution. The composite wind speed pattern (figure 3) is quite asymmetrical. Speeds are considerably higher at about 100 miles from the center in the right sector than for the same distance in other directions. An inspection of weather charts for the period suggests that the storm circulation in this sector was reinforced by the sub-tropical High. As a qualitative check on the validity of the wind speed observations in the right sector, gradient wind speeds for that sector were computed. The computed speeds in the right sector remained higher than the computed speeds in the forward sector beyond 60 miles from the center over the distances compared. Both the stronger pressure gradient and the larger radius of curvature of air parcels in that sector would lead to higher wind speeds.

Deflection angle

A composite wind deflection angle (the angle between the wind direction and a tangent to a circle about the center) pattern over open water was prepared from a plot of deflection angles from ship reports at 1200 CST, 1800 CST September 23, 0000 CST and 0600 CST September 24 and from reports from Burr-
wood, La. from 1800 CST September 23 to 0200 CST September 24 (figure 5). The chart is aligned to the north. Near the radius of maximum wind de-
flexion angles of 20° were assumed because of a limited number of reports. The deflection angle chart is not applicable in the northern portion of the hurricane north of 29° 30′N latitude just off the Mississippi, Ala-
bama and northwestern Florida coast. Deflection angles in that portion of the storm were near 90 degrees.

Isoval charts

Isovel charts at 3-hourly intervals were constructed for the period from 1830 CST September 23 to 1230 CST September 24 (figures 6-12). Where observations were available, isovals were drawn to the observed speeds. This analysis was then compared to the composite wind speed pattern (fig-
ure 3) for consistency and for aid in constructing the isovals where there were no observations. The wind speed profile computed from the pressure profile at 1830 CST September 23 in the forward sector of the storm (fig-
ure 4) was used to construct the isovals near the radius of maximum winds at that time. The isoval pattern at 2130 CST September 23 was interpolated between the 1830 CST pattern and the 0030 CST September 24 pattern. At 0330 CST and 0930 CST September 24 when little or no ship observations were available, the composite wind speed chart adjusted for coastal ob-
servations and for continuity with adjacent patterns was used to construct the isoval pattern over the Gulf.
Wind direction south of latitude 29°30' are determined from the deflection angle chart (figure 5). Wind directions in the Gulf north of latitude 29°30' were determined by streamline analysis of observed wind directions. These derived wind directions are indicated by heavy arrows on the isovel charts.

Observations at coastal stations were taken on the half hour and ship observations were made on the hour. The position of the hurricane center is indicated at the half hour on the isovel charts, figures 6-12. This difference in the time of the ship observation and the chart time caused the ship observations plotted on the isovel chart to be displaced about five miles (the average forward speed of the storm was 10 knots) from the center. Because of the few observations near the center this displacement is not considered significant. All data shown in the composite chart and the pressure profiles were plotted relative to the distance of the observation point from the center at the time of observation.
Table 1

PARAMETERS OF THE SEPTEMBER 24, 1956 HURRICANE NEAR DURRWOOD, LA.

P_0, Central pressure (inches), 28.80*

P_n, Asymptotic pressure (inches), 29.97*

V_{max}, Maximum gradient wind (mph), 74**

R, Radius of maximum winds (nautical miles)

Computed 30*

Observed 22

C, 4-Hour average forward speed at the Coast (knots) 10

At Durrwood, La.

Lowest observed pressure (inches), 29.03

Minimum distance from station to storm track (nautical miles), 17

*Computed from the exponential profile based on the best fit of the following formula to the data

$$\frac{P - P_0}{P_n - P_0} = e^{-R/r}$$

where P is the pressure at radius r, R the radius of maximum winds, P_0 the central pressure, and P_n the asymptotic pressure.

**Theoretical friction-free wind speed at R.

Copies
10 to OCE
1 to BNB

Charles S. Gilman, Chief
Hydrometeorological Section
Figure 1. TRACK OF HURRICANE FLOSSY

SEPTEMBER 23-24, 1956
Figure 2

PRESSURE PROFILES IN THE FORWARD AND RIGHT SECTORS OF HURRICANE FLOSSY

SEPTEMBER 23-24, 1956
Figure 3. COMPOSITE WIND-SPEED PATTERN
HURRICANE FLOSSY

1230 CST SEPTEMBER 23-
1230 CST SEPTEMBER 24, 1956

LEGEND
- Direction of forward motion
- Center

STATION MODELS
COASTAL STATIONS
1230 CST Sept. 23
-1230 CST Sept. 24
42 30-ft over-water
wind speed
Wind direction
03 Time of obs. taken at
30 min. past the hr. CST

SHIP OBSERVATIONS
1200 CST Sept. 23
-0600 CST Sept. 24
43 Wind speed
Wind direction
03 Time of obs. taken
on the hour CST

SCALE
0 10 20 30 40 50 60
NAUTICAL MILES

Note: Speeds in MPH
All times CST
Figure 4. COMPUTED 30-FT OVER-WATER WIND SPEED PROFILES FORWARD SECTOR
HURRICANE FLOSSY
SEPTEMBER 23-24, 1956
Figure 5. WIND DEFLECTION ANGLES SOUTH OF LATITUDE 29°30'N
HURRICANE FLOSSY

1830 CST SEPTEMBER 23 to
1230 CST SEPTEMBER 24, 1956
Figure 6. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY
1830 CST SEPTEMBER 23, 1956
Figure 7. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY
2130 CST SEPTEMBER 23, 1956
Figure 8. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY

0030 CST SEPTEMBER 24, 1956
Figure 9. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY

0330 CST SEPTEMBER 24, 1956
Figure 10. ESTIMATED 30-FT WIND SPEED AND DIRECTION

HURRICANE FLOSSY

0630 CST SEPTEMBER 24, 1956
Figure 11. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY
0930 CST SEPTEMBER 24, 1956
Figure 12. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY
1230 CST SEPTEMBER 24, 1956
MEMORANDUM TO THE CORPS OF ENGINEERS
HUR 7-53

FROM : Hydrometeorological Section

SUBJECT : Pressure and Winds over the Gulf of Mexico in Hurricane Flossy, September 23-24, 1956

REFERENCE: OCE Memorandum, March 17, 1958

Introduction

This study of wind and pressures in the hurricane, as it approached and crossed the Mississippi River Delta during the period from 1800 CST September 23 to 1230 CST September 24, 1956, was made as an aid in computing storm surge hydrographs along the mid-Gulf coast.

Track

The track of Hurricane Flossy on September 23 and 24, 1956 with hourly positions of the center indicated is shown in figure 1. The storm moved off the Yucatan Peninsula into the Gulf of Mexico on September 22. It moved northward across the Gulf during the 23rd then recurved to the northeast just off the Louisiana coast. The center crossed the Mississippi River Delta between Buras and Burwood, La. between 0300 CST and 0600 CST September 24. Continuing northeastward, the center moved inland near Valparaiso, Fla. about 1700 CST September 24.

Pressure

Central pressure. The storm deepened slowly as it moved northward across the Gulf of Mexico. At about 1600 CST September 23 when the storm was centered 130 nautical miles south of New Orleans, La., a reconnaissance flight reported a central pressure of 29.06 inches. On the early morning of the 24th at the time the hurricane center moved across the Mississippi Delta, the central pressure was computed to be near 28.80 inches. This value was based on the minimum pressure of 29.03 inches reported at Burwood as the center passed to the north of the station, and a pressure observation of 28.94 inches from a ship that passed within the eye of the storm about 0900 CST September 24. Later on the 24th, aircraft reconnaissance reported a minimum pressure of 28.76 inches when the storm was centered just off Pensacola, Fla. At 1725 CST when the center was crossing the coast, a dredge within the eye at Destin, Fla. also observed a minimum pressure of 28.76 inches.
Asymmetry of the pressure field. The pressure distribution around the hurricane was asymmetrical. The strongest pressure gradient near the center, but beyond the radius of maximum wind, was in the forward sector. The pressure gradient was weakest south of the center. In the right sector of the storm, at a distance of 100 miles from the center and beyond, the pressure gradient was greater than the gradients that occurred at this distance in the other directions (figure 2). The proximity of the subtropical High to the northeast probably contributed to the larger pressure gradient in this sector at a distance from the center.

Pressure profiles. Figure 2 shows pressure profiles in the forward sector of the storm at 1830 CST September 23 using the reconnaissance observation of 29.06 inches at 1600 CST as the minimum pressure and for the period from 0000 CST to 0330 CST September 24 when the storm had deepened and developed hurricane force winds. Beyond 35 miles from the center the two visually-fitted curves correspond well to pressure profiles derived from an exponential formula indicated by dashed lines. Ships observations of pressure in each quadrant for the period from 1200 CST September 23 to 0000 CST September 24 when the storm was moving north to northeastward are plotted in figure 2 to indicate the difference in the pressure distribution in the right sector from the distribution in the forward sector. Observations at Burrwood and New Orleans are also plotted on the chart. A curve has been visually fitted to the observations in the right sector to indicate the probable average slope of the pressure profile in that sector.

Wind

Data. Isovel patterns were constructed from ship observations of wind speed, wind speeds observed at coastal stations and adjusted to 30-ft over-water speeds, and over-water wind speed profiles computed from pressure profiles in the forward sector of the storm.

Composite wind speed chart. To determine the features of the wind field that persisted over a period of time for use with the wind speeds reported at 3-hourly intervals by the ships and coastal stations, a composite chart of wind observations was constructed and analyzed (figure 3). A number of ship reports and wind speeds observed at coastal stations and adjusted to 30-ft over-water speeds for the period from 1200 CST September 23 to 1230 September 24 were plotted showing the position of the observation from the storm center in relation to the direction of forward motion. Isovels were drawn to the data with extra weight being given to the observations made at 0000 CST September 24 and later.

Considerable smoothing was necessary in analyzing the ship reports because large variations in speed were frequently reported within a small area. These variations may have resulted from squalls in the area which affected only part of the ships, from observers overestimating or underestimating the wind speed, differences in the actual times of the observations, and transmittal errors.
The maximum isovels in the right side of the storm were based largely on the synoptic wind speed records at Burwood, La. In the left sector, the maximum isovels where the data were lacking are based on 30-ft over-water speeds computed from pressures. (Figure 4). The 0000-0930 CST September 24 mean pressure profile in the forward sector (Figure 2) was used for this purpose.

Wind speed distribution. The composite wind speed pattern (figure 3) is quite asymmetrical. Speeds are considerably higher at about 100 miles from the center in the right sector than for the same distance in other directions. An inspection of weather charts for the period suggests that the storm circulation in this sector was reinforced by the sub-tropical High. As a qualitative check on the validity of the wind speed observations in the right sector, gradient wind speeds for that sector were computed. The computed speeds in the right sector remained higher than the computed speeds in the forward sector beyond 60 miles from the center over the distances compared. Both the stronger pressure gradient and the larger radius of curvature of air parcels in that sector would lead to higher wind speeds.

Deflection angle

A composite wind deflection angle (the angle between the wind direction and a tangent to a circle about the center) pattern over open water was prepared from a plot of deflection angles from ship reports at 1200 CST, 1800 CST September 23, 0000 CST and 0600 CST September 24 and from reports from Burwood, La. from 1800 CST September 23 to 0200 CST September 24 (figure 5). The chart is aligned to the north. Near the radius of maximum wind deflection angles of 20° were assumed because of a limited number of reports. The deflection angle chart is not applicable in the northern portion of the hurricane track of 29°30'N latitude just off the Mississippi, Alabama and northwestern Florida coast. Deflection angles in that portion of the storm were near 90 degrees.

Isovel charts

Isovel charts at 3-hourly intervals were constructed for the period from 1830 CST September 23 to 1230 CST September 24 (figures 6-12). Where observations were available, isovels were drawn to the observed speeds. This analysis was then compared to the composite wind speed pattern (figure 3) for consistency and for aid in constructing the isovels where there were no observations. The wind speed profile computed from the pressure profile at 1830 CST September 23 in the forward sector of the storm (Figure 4) was used to construct the isovels near the radius of maximum winds at that time. The isovel pattern at 2130 CST September 23 was interpolated between the 1830 CST pattern and the 0030 CST September 24 pattern. At 0330 CST and 0930 CST September 24 when little or no ship observations were available, the composite wind speed chart adjusted for coastal observations and for continuity with adjacent patterns was used to construct the isoveal pattern over the Gulf.
Wind direction south of latitude 29°30' are determined from the deflection angle chart (figure 5). Wind directions in the Gulf north of latitude 29°30' were determined by streamline analysis of observed wind directions. These derived wind directions are indicated by heavy arrows on the isovel charts.

Observations at coastal stations were taken on the half hour and ship observations were made on the hour. The position of the hurricane center is indicated at the half hour on the isovel charts, figures 6-12. This difference in the time of the ship observation and the chart time caused the ship observations plotted on the isovel chart to be displaced about five miles (the average forward speed of the storm was 10 knots) from the center. Because of the few observations near the center this displacement is not considered significant. All data shown in the composite chart and the pressure profiles were plotted relative to the distance of the observation point from the center at the time of observation.
Table 1

PARAMETERS OF THE SEPTEMBER 24, 1956 HURRICANE NEAR BURRWOOD, LA.

P_o, Central pressure (inches), 28.80*

P_n, Asymptotic pressure (inches), 29.97*

V_{gx}, Maximum gradient wind (mph), 74**

R, Radius of maximum winds (nautical miles)

Computed 30*

Observed 22

C, 4-Hour average forward speed at the Coast (knots) 10

At Burrwood, La.

Lowest observed pressure (inches), 29.03

Minimum distance from station to storm track (nautical miles), 17

*Computed from the exponential profile based on the best fit of the following formula to the data

$$\frac{P - P_0}{P_n - P_o} = \frac{-R}{r}$$

where P is the pressure at radius r, R the radius of maximum winds, P_o the central pressure, and P_n the asymptotic pressure.

**Theoretical friction-free wind speed at R.

Length of

Charles S. Gilman, Chief
Hydrometeorological Section

Copies
10 to OCZ
1 to NWS
Figure 1. TRACK OF HURRICANE FLOSSY

SEPTEMBER 23-24, 1956
Figure 2

Pressure profiles in the forward and right sectors of Hurricane Flossy

September 23-24, 1956
Figure 3. Composite Wind-Speed Pattern
Hurricane Flossy

1230 CST September 23-
1230 CST September 24, 1956

Legend
- Direction of forward motion
- Center
Station Models
Coastal Stations
- SHP Observations
- Time of obs. taken at 30 min past hr. CST

Note: Speeds in MPH
All times CST

Scale
0 10 20 30 40 50 60 Nautical Miles
Figure 4. COMPUTED 30-FT OVER-WATER WIND SPEED PROFILES FORWARD SECTOR
HURRICANE FLOSSY
SEPTEMBER 23-24, 1956
Figure 5. WIND DEFLECTION ANGLES SOUTH OF LATITUDE 29°30'N
HURRICANE FLOSSY

1830 CST SEPTEMBER 23 to
3230 CST SEPTEMBER 24, 1956
Figure 6. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY
1830 CST SEPTEMBER 23, 1956
Figure 8. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY
0030 CST SEPTEMBER 24, 1956
Figure 9. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY

0330 CST SEPTEMBER 24, 1956
Figure 10. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY

0630 CST SEPTEMBER 24, 1956
Figure 11. **ESTIMATED 30-FT WIND SPEED AND DIRECTION**

HURRICANE FLOSSY

0930 CST SEPTEMBER 24, 1956
Figure 12. ESTIMATED 30-FT WIND SPEED AND DIRECTION
HURRICANE FLOSSY
1230 CST SEPTEMBER 24, 1956
TO: Mr. A. L. Cochran, Civil Works
 Office of Chief of Engineers
 Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: Wind Speeds and Directions in Hurricane Audrey near the
 Louisiana Coast, June 27, 1957, HUR 7-51a

References: (1) Telephone request from Mr. Dwight Dunn of the Office
 of Chief of Engineers, U. S. Corps of Engineers
(2) HUR 7-51, March 25, 1958
(3) National Hurricane Research Project, Report #68,
 "Criteria for a Standard Project Northeaster for
 New England North of Cape Cod," Appendix C and
 figure 37

Herewith transmitted is the subject memorandum. It is an addendum to
HUR 7-51, and contains charts for times in between those previously
given in HUR 7-51, and extends the wind field charts to cover the rest
of the calendar day previously unreported, 1400 CST through 2400 CST.

The memorandum furnishes 16 isovel charts (surface wind speeds and di-
rections) covering the period 0000 CST to 2400 CST, June 27, 1957, over
the Gulf of Mexico near the Louisiana coast during the occurrence of
Hurricane Audrey. The charts cover the period 0000 to 0600 CST at
two-hourly intervals, 0600 to 1200 CST at one-hourly intervals, and
1200 to 2400 CST at two-hourly intervals.

Vance A. Myers
Chief, Hydrometeorological Section

cc: all to CG

HVGoodyear/lu

July 9, 1964

E-1.12
RETURN TO
TIDAL SECTION

July 9, 1964

M-1.12

MEMORANDUM TO THE CORPS OF ENGINEERS

FROM
Hydrometeorological Section

SUBJECT: Wind Speeds and Directions in Hurricane Audrey near the Louisiana Coast, June 27, 1957

References:
1. Telephone request from Mr. Dwight Dunn of the Office of Chief of Engineers, U. S. Corps of Engineers
2. HUR 7-31, March 25, 1958

Figures 1 through 16 are surface isovel patterns in the Gulf of Mexico near the Louisiana coast for the period 0000 CST to 2400 CST, June 27, 1957. During this period Hurricane Audrey approached the mainland from the south, entered the coast near Cameron, Louisiana near 0830 CST and subsequently recurved northeasternly.

The figures cover the period from 0000 CST to 0600 CST at two-hourly intervals, then one-hourly to 1200 CST, then two-hourly to 2400 CST.

Figures 1, 4 and 6 are copies (on a slightly larger scale) of figures 5, 8 and 7 in HUR 7-31 and are repeated in this memorandum so as to furnish a complete set for the calendar day.

Figures 2, 3, 5, 7, 8, 9 and 10 were developed by direct time and space interpolation using figures 3 through 8 in HUR 7-31. All available surface reports (land and ship) were inspected as a check for consistency and validity of values of winds and directions in the interpolated charts.

The remainder of the charts, 1400 CST through 2400 CST, figures 11-16 were constructed by first developing the isovel charts for 1800 CST (0000 GMT of the 28th) and for 2400 CST (0600 GMT of the 28th). North American and Northern Hemisphere Surface Charts were used, as well as...
all available land and ship surface reports. In areas where reports were not available the surface winds were estimated by utilizing the
geostrophic wind \(27\) as measured from the analyzed North American Surface Charts. The wind directions were drawn with a deflection angle of
approximately 25 degrees as indicated by previous work in HUR 7-51.

The other charts, figures 11, 12, 14 and 15 were then drawn by interpolation and use of surface observations where available.

Vance A. Myers
Chief, Hydrometeorological Section

Attachments

ext 3 to OCE with attachments

HVGoodyear/ln
FIGURE 5
WIND SPEED (KPH) AND DIRECTION
(40 ft. over water)
June 27, 1957
0700 CST
FIGURE 9
WIND SPEED (KPH) AND DIRECTION
(30 ft. over water)
June 27, 1957
FIGURE 11:
WIND SPEED (MPH) AND DIRECTION
(30 ft. over water)
June 27, 1957
1400 CST
MEMORANDUM TO THE CORPS OF ENGINEERS

HUR 7-51

FROM : Hydrometeorological Section

SUBJECT : Pressures, Wind Speeds and Directions in Hurricane Audrey near the Louisiana Coast, June 27, 1957

Introduction

Hurricane Audrey of June 27, 1957, one of the most destructive June hurricanes of record, moved inland near the Texas-Louisiana border causing disastrous storm tides along the coast. Greatest destruction from tides and winds extended from Sabine Lake, Tex., to Cote Blanche Bay, La. The death toll in this area is estimated at about 400 and damage at $150,000,000*. As an aid in computing storm surge hydrographs, a detailed wind and pressure analysis of this storm has been made.

Track

Hurricane Audrey was first reported as a tropical depression in the Bay of Campeche on June 24, 1957. The storm increased to hurricane intensity on the 25th and then moved northward, the center crossing the Louisiana coast at about 0830 CST June 27 midway between Sabine, Tex. and Cameron, La. The storm began recurvature to the northeast about the time it passed inland.

The smoothed track of the hurricane center is shown in figure 1. Over the Gulf of Mexico, hourly positions of the storm center along the track were determined largely from aircraft reconnaissance reports and land based radar reports. Over land, the hourly positions were determined from reports of calms and from radar reports. As the hurricane center crossed the coast, the radar eye was reported to be larger than the wind eye. However, the latter

was contained within the radar eye. Reports of minimum pressures and wind shifts were also used in positioning the track by applying methods described in Hydrometeorological Report No. 32, "Characteristics of United States Hurricanes Pertinent to Levee Design for Lake Okeechobee, Florida."

Pressure

There was no observation of the minimum pressure in the hurricane at the time the center moved inland. An indication of the central pressure at the coast was obtained by constructing an average sea-level pressure profile for the hurricane (figure 2) by the method described in Hydrometeorological Report No. 32, using the equation

\[\frac{P - P_0}{P_n - P_0} = e^{-\frac{R}{r}} \]

where \(P_0 \) = central pressure, \(P_n \) = asymptotic pressure, \(R \) = radius to area of maximum winds, and \(P \) = pressure at distance \(r \).

In this method, which assumes a circular storm, an exponential profile defined by the above formula is fitted to a visually-drawn radial pressure profile of the storm most exactly for the inner portion and less exactly for the entire profile in order to minimize the error in \(P_0 \).

The lowest observed pressure in the hurricane, 28.30 in. at Hackberry, La., 12 nautical miles from the pressure center, was used as the innermost point of the visually-drawn profile when computing the exponential curve. The minimum observed pressure at Port Arthur, Tex., 28.52 in., 17 nautical miles from the pressure center, also fell on the exponential curve. Pressure distribution around Audrey as a whole was asymmetrical, but it was most nearly symmetrical within 60 nautical miles of the center. The exponential profile, shown as the heavy line in figure 2, was fitted to the visually-drawn profile of the symmetrical part of the hurricane. Beyond 60 nautical miles from the center, where the asymmetry was greater, the exponential curve departs from the visually-fitted curve.

A 70-percent confidence interval about the central pressure as extrapolated from the pressure observation nearest the pressure center can be read from figure 18, Hydrometeorological Report No. 32. This chart indicates that, assuming the observed pressure observations are placed the correct distance from the storm center, there is a 70-percent probability that the true central pressure in Hurricane Audrey lies between 27.15 in. and 28.35 in. This range is shown by the dashed lines in figure 2.

Composite wind pattern

A composite over-water wind speed and direction pattern for the hurricane when it was off the Texas-Louisiana coast is shown in figure 4. The
pattern was developed from ship reports, coastal observations and aircraft reconnaissance reports.

Converting observations from time to space distribution--To supplement the sparse offshore observations over the hurricane, wind observations from coastal stations adjusted to 30-ft over-water speeds were converted from a time to space distribution by plotting the data on a chart relative to the storm center and the direction of forward motion at the time of the observation (figure 3).

Time periods for observations--To construct the over-water wind speed pattern, ship observations of wind velocities for the period from 1500 CST June 26 to 1800 CST June 27 and wind velocities at coastal Weather Bureau stations at hourly intervals for the period from 1800 CST June 26 through 1800 CST June 27 were plotted on the composite observation chart (figure 3). These periods of time were selected in order to obtain observations in all quadrants of the hurricane as it passed over the coastal stations. Wind reports made by the U. S. Coast Guard Stations at Sabine, Tex. and Cameron, La. were also plotted on the chart. However, since the values plotted on the chart represented sustained wind speeds, the peak gusts reported by four Continental Oil Co. oil barge tenders adrift off the coast southeast of Cameron were not plotted on the composite observation chart.

Adjustments for intensity changes off the coast--In constructing the composite wind speed pattern, no adjustments were made to the wind speed for the effects of deepening or filling as the storm center approached the coast. When the hurricane was over the Gulf, the data near the center were too limited to indicate the details of any changes in the central pressure. Nor were there marked changes over the outer portion of the storm where data were available to serve as a guide to the time or amount of change of intensity of the storm.

Adjustments for filling after landfall of center--The wind speeds observed at the coastal stations after the storm center had been over land and filling had occurred were adjusted upward to assumed corresponding values before landfall. The adjustments were by the factors in the following table adapted from a study of average filling rates for 11 hurricanes.
Table 1

FACTORS FOR INCREASING HURRICANE WINDS OBSERVED AFTER LANDFALL TO COMPENSATE FOR FILLING OVER LAND

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Adjustment Ratio for Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (at coast)</td>
<td>1.00</td>
</tr>
<tr>
<td>T + 1</td>
<td>1.08</td>
</tr>
<tr>
<td>T + 2</td>
<td>1.14</td>
</tr>
<tr>
<td>T + 3</td>
<td>1.18</td>
</tr>
<tr>
<td>T + 4</td>
<td>1.22</td>
</tr>
<tr>
<td>T + 5</td>
<td>1.25</td>
</tr>
<tr>
<td>T + 6</td>
<td>1.28</td>
</tr>
<tr>
<td>T + 7</td>
<td>1.32</td>
</tr>
<tr>
<td>T + 8</td>
<td>1.35</td>
</tr>
</tbody>
</table>

The time selected for T (landfall of center) was 0900 CST June 27.

Analysis of observations—Independent analyses were made from the ship reports and from the adjusted land station reports. The two analyses agreed very well in most areas. The final analysis (figure 4) was made by combining the first two analyses and comparing the resulting isovel pattern with the distribution of wind speeds in the hurricane as reported by aircraft reconnaissance. The final composite pattern shows a wind-speed maximum of over 100 mph in the right sector.

Radius of maximum winds

A radius of maximum winds of nineteen nautical miles was computed using the exponential formula from the preceding section. This value is supported by observed data. Neither Lake Charles, La., nor Port Arthur, Tex., which lay approximately 19 nautical miles to the right and left of the track of the storm center, respectively, reported a lull in the wind as the center passed closest to the station. Their peak winds occurred about the time the center passed closest to the station (figure 3). This would indicate that they lay at or outside the radius of maximum winds. The wind eye at the storm center reported to be less than 15 miles in diameter.* The U. S. Coast Guard at Sabine, Tex., 15 nautical miles west of the track, reported a decrease in the winds as the center passed by, and at Cameron, about 20 nautical miles to the east of the track, the Coast Guard reported that there was no decrease in speed. Therefore it is reasonable to assume that the average radius of maximum winds was within the area defined by the minimum distance of Lake Charles

Report to Chief of Weather Bureau from Director, National Hurricane Research Project, July 6, 1957.
and Port Arthur from the center and the limits of the wind eye.

Isovel charts for various hours

Isovel charts are shown in figure 5 for 0000 CST June 27 when the storm was still over the Gulf, in figure 6 for 0600 CST June 27 when the center was nearer the coast, in figure 7 for 0800 CST when the center was at the coast, and in figure 8 for 1300 CST June 27 when the center had moved inland. For the first three charts it was assumed that no appreciable filling or deepening occurred from 0000 CST June 27 until after the storm center crossed the coast. The composite wind-speed pattern (figure 4) was superimposed on charts of the Gulf with the front sector of the pattern aligned in the direction of forward motion. The isoveels along the coast were adjusted to off-water and off-land speeds. To construct the isoveels off the coast at 1300 CST, when the storm had been inland for several hours, a new composite wind-speed pattern was constructed for that portion of the storm remaining over water by the method described above under composite wind pattern using observations from 1300 CST to 1800 CST, unadjusted for the effects of filling.

Wind direction

Wind directions in the storm are shown by the short arrows on the composite wind-speed and direction pattern, figure 4. Since the hurricane was not symmetrical, a standard wind deflection angle across circles around the center as used for some other hurricanes was not appropriate. A composite pressure pattern for the storm at the coast (not shown) was drawn by adding the pressure values to wind observations in the composite plot of the coastal stations used for the wind-speed analysis and then drawing isobars to these pressure values. The majority of the ship reports showed good agreement with directional arrows drawn at 25° to the tangent to the isobars, so this deflection angle was used over the whole storm. By 1500 CST June 27, after the storm center had moved over land, the isobar pattern changed, becoming elongated to the west instead of to the south. This change, and the recurvature of the hurricane to the northeast, gives an apparent increase in the deflection angle across the isobars of the composite observation chart (figure 3) for those observations that were made in the left rear quadrant after 1200 CST June 27. However, ship observations of wind directions made at 1200 CST and later that were compared to pressure analyses of the storm made at these times indicate that the wind in the portion of the storm over water was still blowing across the isobars at a deflection angle of approximately 25°.

A comparison of peak gusts with sustained wind speeds

A comparison of peak gusts with sustained wind speeds was made in order to evaluate unusually high speeds reported from four oil barge tenders and to find an empirical relationship between sustained over-water speeds and over-water peak gust speeds. Four oil barge tenders adrift southeast of Cameron
during hurricane Audrey logged wind speeds up to 150 mph which were reported to be peak gusts. A comparison of these reports was made with the average wind speed and peak gusts recorded in the same area by the oil drill barge, Vinegaroon, and with the wind speed profile from the right forward sector of the composite wind speed pattern, (figure 4). The wind speed profile in the right forward sector of the storm was selected for comparison because the Vinegaroon record and the majority of the gusts reported by the tenders occurred while the vessels were in that sector.

Observations--A chart showing the estimated courses and hourly positions of four Continental Oil Co. tenders, the Sharpe, Bates, Reading, and Craig, and extracts from the logs of the vessels was prepared by the Continental Oil Co. The extracts from the logs covered a period of time from 0230 CST to 1830 CST June 27. It was reported that the wind speeds logged by the tenders were peak gusts read from anemometer dial indicators. The tenders were equipped with Bendix-Friez selvyn type anemometers located 65 ft above the water. The oil drill barge, Vinegaroon, owned by the Zapata Off-Shore Co. was equipped with a Bendix Aerovane recording anemometer. A copy of the Vinegaroon wind speed record was obtained for the period from the early morning of June 26 to 0600 CST June 27 when the record ended. The barge was located at approximately 29°38'N latitude, 93°05'W longitude during this period. The average wind speed for 15-minute intervals and the peak gusts for each interval were read from the Vinegaroon trace in the course of this study from 2300 CST June 26 until the record ended at 0600 CST June 27.

Comparison of the data--The comparison of the over-water peak gusts with 15-minute average over-water wind speeds recorded in the right sector of the hurricane by the barge Vinegaroon and with the wind-speed profile from the right forward section of the composite over-water wind speed pattern (figure 4) is shown in figure 9. The wind speeds were plotted at the distance of the observation from the hurricane center. At the same distance from the storm center, the speeds reported by the tenders are compared with the peak gust speeds recorded by the Vinegaroon. For sustained winds of 50 mph or higher, the peak gusts near the center of the storm averaged 40 to 50 percent more than the sustained winds. Speeds reported from the oil barge tender are comparable to reported peak gusts on the Vinegaroon. It is confirmed that the tender's wind speeds were peak gust speeds.

Hurricane parameters

Hurricane parameters observed or computed for hurricane Audrey by the methods described in Hydrometeorological Report No. 32 are listed below.
<table>
<thead>
<tr>
<th>Hurricane Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Pressure, (P_0)</td>
</tr>
<tr>
<td>(inches)</td>
</tr>
<tr>
<td>27.95*</td>
</tr>
<tr>
<td>Asymptotic Pressure, (P_n)</td>
</tr>
<tr>
<td>(inches)</td>
</tr>
<tr>
<td>Computed (27.95*)</td>
</tr>
<tr>
<td>Observed (27.95**)</td>
</tr>
<tr>
<td>Radius of Maximum Wind, (R.)</td>
</tr>
<tr>
<td>(nau. miles)</td>
</tr>
<tr>
<td>Computed 19*</td>
</tr>
<tr>
<td>Observed 16-19#</td>
</tr>
<tr>
<td>Average Maximum Gradient Wind, (V_{gx})</td>
</tr>
<tr>
<td>(mph)</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>4-Hour Average Forward Speed at the Coast, (C)</td>
</tr>
<tr>
<td>(knots)</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>Lowest Observed Pressure On Land, (P_a)</td>
</tr>
<tr>
<td>28.30</td>
</tr>
<tr>
<td>Station</td>
</tr>
<tr>
<td>U. S. Wildlife Service,</td>
</tr>
<tr>
<td>Hackberry, La.</td>
</tr>
<tr>
<td>Minimum Distance from Station Storm Track, (R_a)</td>
</tr>
<tr>
<td>(nau. miles)</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

* Computed with the exponential formula
** Observed on weather charts
Estimated from miscellaneous wind observations
The computed maximum gradient wind represents an average speed at the radius of maximum wind. Because of the asymmetry of the pressure field of this hurricane the highest observed winds adjusted to 30-ft over-water winds are greater than the average maximum gradient wind. The average of the wind speeds read at eight points around the center at the radius of maximum winds (figure 2) is 82 mph. This value is equivalent to the average maximum gradient wind speed, 95 mph, reduced to 30-ft over-water speed using the factor of 86.5% taken from figure 26, Hydrometeorological Report No. 32.

Charles S. Gilman, Chief
Hydrometeorological Section
PRESSURE PROFILE, HURRICANE AUDREY
JUNE 26-27, 1957

Figure 2
Figure 3. SURFACE WIND SPEED AND DIRECTION PLOTTED RELATIVE TO WIND CENTER
1800 CST JUNE 26 -- 1800 CST JUNE 27, 1957

STATION MODELS

LAND STATION

Direction of Forward Motion
Wind Center

All Wind Speeds - MPS

Times - CST

OVER-WATER OBSERVATION

OCC

Wind Direction

Observed Speed
30-ft. Over-Water Speed
30-ft. Over-Water Speed

Time of Observation

Time of Observation → OCC
Figure 1. TRACK OF HURRICANE AUDREY -- JUNE 27, 1957

O HOU bubble NAME OF CENTER (CST)

\[V_H = 15 \text{ mph} \]
Figure 4. COMPOSITE WIND SPEED PATTERN OVER WATER IN THE VICINITY OF TEXAS-LOUISIANA COAST
Adjusted to 30-ft. over-water speeds (mph)

HURRICANE AUDREY
JUNE 26-27, 1957
Figure 5 WIND SPEED AND DIRECTION
JUNE 27, 1957
0000 CST
Figure 6 WIND SPEED AND DIRECTION
JUNE 27, 1957
0600 CST

* Wind Center
Wind Direction

All wind speed in M.P.H.
STATION MODEL

30 ft. Over-water wind speed

30 ft. Wind speed
Figure 7 WIND SPEED AND DIRECTION
JUNE 27, 1957
0800 CST

* Wind Center
Wind Direction
All wind speed in M.P.H
STATION MODEL
30 ft. Over-water wind speed

Wind direction
30 ft. Wind speed
Figure 7a WIND SPEED AND DIRECTION
JUNE 27, 1967
1100 CST
Figure 8: WIND SPEED AND DIRECTION
JUNE 27, 1957
1300 CST
COMPARISON OF PEAK GUSTS TO SUSTAINED WINDS IN THE RIGHT SECTOR OF HURRICANE AUDREY, JUNE 27, 1957

Figure 9

VESSELS

- SHARP
- CRAIG
- BATES
- READING

PEAK GUSTS

STORM CENTER ADVANCING TOWARD OBSERVATION POINT

STORM CENTER RETREATING FROM OBSERVATION POINT

VINEGAROON, PEAK GUSTS

15 MIN. AVERAGE WIND SPEED

30-Ft. Over-water wind speed in the forward section of the Hurricane

DISTANCE FROM CENTER (nautical miles)

WIND SPEED (M.P.H.)
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-45A

FROM : Hydrometeorological Section

SUBJECT: Standard Project Hurricane Isovels for a High Speed of Translation of the Hurricane Center, Gulf of Mexico Area, Zone C (Texas Coast)

References: (1) Telephone conversation, Messrs. Myers and Nunn, Nov. 1, 1957, regarding Standard Project Hurricane isovel patterns for a high rate of translation for Zones B and C (U.S. Gulf Coast)

(2) HUR 7-45, Standard Project Hurricane Parameters and Isovels, Gulf of Mexico Area, Zone C (Texas Coast)

This memorandum contains an isovel pattern for a Standard Project Hurricane in Zone C with a high speed of translation as requested in reference (1).

Isovel chart

A synthetically derived isovel chart for a Standard Project Hurricane with a central pressure of 27.42 in. and a high speed of translation has been developed for Zone C off the coast opposite Corpus Christi, Tex. This was done by imposing a degree of asymmetry to isotachs of gradient winds computed from pressure profile parameters and reduced to 30-ft. winds by empirical factors. The asymmetry factor, added to speeds on the right and subtracted from speeds on the left was (0.5T)cos a where T was the representative high speed of translation of a Standard Project Hurricane in Zone C, 28 knots as shown in Table 1 reference (2), and a the angle between the direction of forward motion and the wind direction.

A pattern showing the strongest winds in the right rear quadrant was selected as that most likely to occur by at least two authors. Isaac Cline in his book "Tropical Cyclones" states that "the wind velocities are much greater in the right half than in the left half of the cyclone".
area, and the greatest sustained wind velocities occur as a rule in the right rear quadrant. L. A. Hughes has summarized a large number of reconnaissance flights ("On the Low-Level Structure of Tropical Storms," Journal of Meteorology, Dec. 1952) producing the best and most definitive composite low-level wind speed pattern yet available. The strongest winds are in the right rear quadrant in that pattern. Many variations may occur in the standard isovels pattern. To represent the many patterns that it would be reasonable to expect in Zone C, the isovels in the attached figure may be rotated with limits of 100° counterclockwise and 50° in a clockwise direction. The limits of rotation are indicated on the figure by dashed arrows extending outward from the wind center.

Variation of forward speed

The forward speed for a Standard Project Hurricane is chosen within or near the range of forward speeds shown in Table 1, reference (2). Forward speeds within these spans can be assumed to be independent of CPI and B. The attached isovels pattern computed for a forward speed of 28 knots is applicable for 20 knots to 40 knots although 28 knots is the fastest observed 4-hour average speed in the Gulf.

Other factors

Comments on variation in the radius of maximum wind, application to other Zone B locations, wind direction, the critical path, and adjustment for filling over land may be found in reference (2) to which this memorandum is supplementary.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments:

12 copies to OCE with attachments
1 to NEB with attachments
STANDARD WIND SPEED (MPH) PATTERN
ZONE C, (TEXAS COAST)
HIGH RATE OF TRANSLATION = 28 KTS.
X - WIND CENTER
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-44

FROM: Hydrometeorological Section

SUBJECT: Standard Project Hurricane Isovel Patterns, Norfolk area

References: (1) Notes on conference on Hurricane Investigation Under P.L. 71, Downtown Norfolk area, Sept. 10 and 11, 1957
(2) HUR 2-1, Frequency of Central Pressure Indices along Atlantic Coast, June 18, 1957
(3) HUR 2-3, Hurricane Characteristics, Atlantic Coastal area, June 18, 1957
(4) HUR 7-43, Standard Project Hurricane Criteria and Isovel Patterns, East Coast U.S. Zone 3, in preparation

This memorandum shows isovel patterns for a Standard Project Hurricane (SPH) along a track critical for the Norfolk area.

Track

The track, which is shown in figure 1, was proposed in conference (reference 1) and is critical for the Norfolk area. In all observed cases of wind-caused high water near Norfolk, the wind direction ranged generally from the northeast quarter. For an unusually high surge at Norfolk, the Hydrometeorological Section has been advised that strong winds must have a component down the Chesapeake Bay as well as into the mouth of the Bay from the Ocean. Moving the storm along the track shown in figure 1 meets these requirements.

Wind Speed

Derivation of isovel pattern

The basic synthetically derived isovel pattern for zone 3 is described in reference 4. In order to show the strongest winds from the critical direction, this basic isovel pattern (figure 3 of HUR 7-43) was turned 90° counterclockwise.
An isovel pattern showing the strongest winds in the right rear quadrant, as in reference 4, is believed to be the condition that most frequently occurs. That pattern is also an approximate mean of many possible variations. Figures 2 through 9 of this memorandum show one of the possible variations in individual tropical storms that is most critical for Norfolk. Further justification for placing the strongest winds to the northeast in the Norfolk SPH is that the maximum extent of strong winds is usually in the direction of the major anticyclone in the area. Such a track as shown in figure 1 would likely be associated with an anticyclone extending northeast of Norfolk, Va.

Parameters

The isovel charts were developed with the following characteristics.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure No.</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

*Based on formula, \(V_{max} = 0.865V_{gx} + T/2 \)

where \(V_{gx} \) = maximum gradient wind speed and \(T \) = forward speed of storm center in mph

Variation of forward speed

The wind speed patterns of figures 2-9 are empirical approximations and a high degree of refinement for forward speed is not warranted. The wind pattern was computed for a forward speed of 23 mph and can be used for forward speeds ranging from 12 to 50 mph.
Wind Direction

Wind directions at 30' are shown on the isovel charts by arrows. Because of the curving field, the direction is correct only at the arrow point. Wind directions may also be approximated from table 2.

Table 2

<table>
<thead>
<tr>
<th>Radius</th>
<th>Deflection angle*</th>
</tr>
</thead>
<tbody>
<tr>
<td>R to center</td>
<td>20°</td>
</tr>
<tr>
<td>R to 1.2 R</td>
<td>Transition 20° to 25°</td>
</tr>
<tr>
<td>1.2 R and beyond</td>
<td>25°</td>
</tr>
</tbody>
</table>

*Angle between true wind direction and a tangent to a circle with center at the wind center.

3 copies to OGE
1 copy to HEB

[Signature]

Charles S. Gilman, Chief
Hydrometeorological Section
Figure 6
WIND SPEED (MPS)
at 50 feet over water for STANDARD PROJECT HURRICANE
NORMOL, VA. AIP
Radius to Region of Maximum Winds
r = 34 Nautical Miles
Forward Speed = 25 MBS
O = Wind Center
MEMORANDUM TO THE CORPS OF ENGINEERS
HUR 7-45
FROM ; Hydrometeorological Section

SUBJECT: Standard Project Hurricane Parameters and Isovels, Gulf of Mexico Area, Zone C (Texas Coast)

References: (1) OCE letter May 23, 1957, Hurricane Studies (P.L. 71) Galveston District
(2) HUR 2-4, Hurricane Frequency and Correlations of Hurricane Characteristics for the Gulf of Mexico Area P.L. 71, August 30, 1957

This memorandum lists parameters and contains a wind speed pattern for a severe hurricane in Zone C (figure 1) on the Gulf Coast of the United States as requested in reference (1). The purpose of this memorandum is analogous to MEMORANDUM HUR 7-33 for Zone 4 on the East Coast and MEMORANDUM HUR 7-42 for Zone B.

Hurricane parameters

Hurricane parameters and characteristics used in this memorandum are explained in detail in HUR 2-4. Characteristics of an extreme hurricane in various parts of Zone C are listed in Table 1 and are consistent meteorologically from point to point along the coast. The central pressure index (CPI) selected as representative of a Standard Project Hurricane and pertaining to each location along the coast were taken from figure 5 of reference 2 along the CPI curve indicating an average return period of one hundred years. These are consistent with the representative Standard Project Hurricanes for the East Coast, Lake Okeechobee, and Zone B (figure 1).

Isovel chart

A synthetically derived isovel chart has been developed for Zone C off the coast opposite Corpus Christi, Texas, which is near the center of the zone. This was accomplished by computing gradient winds from the pressure parameters, reducing them to 30-foot winds by empirical factors, and then imposing a small degree of asymmetry on the isovels. The asymmetry factor, added to speeds on the right and subtracted from speeds on the left, was \((0.5T) \cos \alpha\), where \(T\) was the forward motion of the storm in mph, and \(\alpha\) the angle between direction of forward motion and wind direction. The curves of the highest value of the wind speed from these various steps are shown in figure 2. The resulting pattern for a CPI of 27.42 inches and a
Table 1

PARAMETERS OF SYNTHETIC HURRICANES IN ZONE C

<table>
<thead>
<tr>
<th>Zone</th>
<th>Mile (From fig. 5)</th>
<th>Lat. at Coast (Deg.N)</th>
<th>Near City or other landmark</th>
<th>CPI (inches)</th>
<th>Radius of Max. Winds (Naut. miles)</th>
<th>Forward Speed (Knots)</th>
<th>Representative Max. Wind Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RS</td>
<td>RM</td>
<td>RL</td>
</tr>
<tr>
<td>C</td>
<td>420</td>
<td>30</td>
<td>Port Arthur, Tex.</td>
<td>27.54</td>
<td>7</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>29</td>
<td>Galveston, Tex.</td>
<td>27.52</td>
<td>7</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>29</td>
<td>Bay City, Tex.</td>
<td>27.49</td>
<td>6</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>28</td>
<td>San Antonio Bay, Tex.</td>
<td>27.45</td>
<td>6</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>27</td>
<td>Sarita, Tex.</td>
<td>27.38</td>
<td>6</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>26</td>
<td>Brownsville, Tex.</td>
<td>27.28</td>
<td>6</td>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

* For R = 24 naut. miles and forward speed of 10 knots (12 mph). Varies slightly with changes in these parameters.

CPI Central pressure index
RS Representative small radius to region of maximum winds
RM Representative mean radius to region of maximum winds
RL Representative large radius to region of maximum winds
ST Representative slow speed of translation of hurricane center
MT Representative moderate speed of translation of hurricane center
HT Representative high speed of translation of hurricane center

V_gx Maximum theoretical gradient wind computed for each CPI by use of fig. 13, HUR 2-4, with \(P_n = 29.92 \text{ in.} \)

\(V_x \) Estimated 30 ft speed in region of highest speeds, computed from \(V_x = 0.865 \, V_{gx} + 0.5T \) where \(T \) is forward speed in mph (\(T = 12 \text{ mph} \))
forward speed of 10 knots is shown in figure 3.

Variation of R

The distance scale in figure 3 is in terms of radius of maximum winds (R). Any R listed in table 1 may be substituted as the distance scale.

Variation of CPI

The isovel pattern, figure 3, was constructed for a CPI value in the middle of Zone C. There is an intrazonal variation in wind speed in Zone C because of the variation of CPI. The isovels in figure 3 can be adjusted to other CPI's by multiplying them by the factors listed in table 2.

Table 2

<table>
<thead>
<tr>
<th>CPI (inches)</th>
<th>Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.55</td>
<td>0.97</td>
</tr>
<tr>
<td>27.50</td>
<td>0.98</td>
</tr>
<tr>
<td>27.45</td>
<td>0.99</td>
</tr>
<tr>
<td>27.40</td>
<td>1.00</td>
</tr>
<tr>
<td>27.35</td>
<td>1.01</td>
</tr>
<tr>
<td>27.30</td>
<td>1.02</td>
</tr>
<tr>
<td>27.25</td>
<td>1.03</td>
</tr>
</tbody>
</table>

* Ratios for (T) Forward speed of 10 knots, Fig. 2

Variation of forward speed

The forward speed for a project hurricane is chosen within or near the range of forward speeds shown in table 1. Forward speeds within this span can be assumed to be independent of CPI and R. Fast-moving hurricanes are believed to have a greater asymmetry of their wind-speed fields than slow-moving storms. The highest speeds are most generally found somewhere in the right half of the storm. These two conditions have been confirmed in developing the pattern of figure 3 by adding the forward speed factor described under "isovel chart." This is an empirical approximation and a high degree of refinement of adjusting wind patterns to forward speed is not required; figure 3 computed for a forward speed of 10 knots or approximately the average forward speed of Zone C can be applied to storms with 1/2 to twice this forward speed.

An investigation of forward speed in relation to latitude in the Gulf Coast area showed no significant relationship in contrast to the latitudinal variation found along the Atlantic Coast.

Wind direction

The wind direction for use in conjunction with the wind speed pattern of figure 3 may be approximated from table 3. These directions are shown by arrows on the chart.
Table 3

WIND DIRECTION

<table>
<thead>
<tr>
<th>Radius</th>
<th>*Deflection Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius R to center</td>
<td>20°</td>
</tr>
<tr>
<td>R to 1.2R</td>
<td>Transition 20° to 25°</td>
</tr>
<tr>
<td>1.2R and beyond</td>
<td>25°</td>
</tr>
</tbody>
</table>

*Angle between true wind direction and a tangent to a circle with center at the storm center.

Critical path

The path for a project hurricane is selected on the basis of the configuration of the coast or inlet concerned within the span of directions that are shown to be common on the azimuth chart of past hurricane paths in the zone, figure 4 (from HUR 2-4). Most hurricanes pass through Zone C from the east and southeast and a smaller number from the south. Hurricanes have moved through the zone from bearings of 30° to 210°. There is no evidence of a correlation between hurricane intensity and path.

Comparison of synthetic isovels with past storms

Four of the most severe storms of record to pass through Zone C were the hurricanes of September 8, 1900, August 13, 1932, August 18, 1916 and September 5, 1933. The hurricane parameters of these storms are listed in table 4 and may be compared with the parameters of synthetic hurricanes in table 1.

Table 4

PARAMETERS OF SEVERE HURRICANES PASSING THROUGH ZONE C

<table>
<thead>
<tr>
<th>Date</th>
<th>CPI (inches)</th>
<th>R (nau.mi.)</th>
<th>Forward Speed (knots)</th>
<th>Max. 30-ft Wind (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 8, 1900</td>
<td>27.64</td>
<td>14</td>
<td>10</td>
<td>88 (estimate HUR 7-36)</td>
</tr>
<tr>
<td>Aug. 13, 1932</td>
<td>27.83</td>
<td>12</td>
<td>15</td>
<td>93*</td>
</tr>
<tr>
<td>Aug. 18, 1916</td>
<td>28.00</td>
<td>35</td>
<td>11</td>
<td>100*</td>
</tr>
<tr>
<td>Sept. 5, 1933</td>
<td>28.02</td>
<td>20</td>
<td>8</td>
<td>91*</td>
</tr>
</tbody>
</table>

*Estimated from computed gradient winds listed in table 3-1, National Hurricane Research Project Report No. 5. Maximum 30-ft wind = 0.865 Vgx where Vgx is the maximum gradient wind.

Adjustment for filling overland

The critical path may pass partly overland. The normal weakening of a hurricane over land can be approximated by reducing the open sea wind speed values by the following factors, taken from Table 4, HUR 7-43, which are based on the time elapsed since the storm center crossed the coast.
Table 5

FACTORS FOR REDUCING HURRICANES FOR FILLING OVER LAND

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Adjustment ratio for wind speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (at coast)</td>
<td>1.00</td>
</tr>
<tr>
<td>T + 1</td>
<td>0.93</td>
</tr>
<tr>
<td>T + 2</td>
<td>0.88</td>
</tr>
<tr>
<td>T + 3</td>
<td>0.85</td>
</tr>
<tr>
<td>T + 4</td>
<td>0.82</td>
</tr>
<tr>
<td>T + 5</td>
<td>0.80</td>
</tr>
<tr>
<td>T + 6</td>
<td>0.78</td>
</tr>
<tr>
<td>T + 7</td>
<td>0.76</td>
</tr>
<tr>
<td>T + 8</td>
<td>0.74</td>
</tr>
</tbody>
</table>

The factors in Table 5 will yield speeds for portions of the storm that are still over water. Further reductions would be required to obtain the speeds over land.

8 copies to OCE
1 copy to BKB

Charles S. Gilman, Chief
Hydrometeorological Section
FIGURE 2
RELATION OF MAXIMUM WIND SPEEDS TO CENTRAL PRESSURE INDEX,
SYNTHETIC ISOVEL PATTERNS,
ZONE C

LEGEND
a—computed maximum gradient wind with $P = 29.92$ in.
b--86 +1/2% of curve a
c--curve b plus 1/2%
T=forward speed of storm in miles per hour

MA: 10 x 10 TO THE 1/2 INCH 359-11
KLEPPEL & KENNEDY REINBL. 7-1-4
FIGURE 3
STANDARD PROJECT HURRICANE
30-FT. OVER-WATER WIND SPEED FOR
LARGE RADIUS (RL) AND MEDIUM RADIUS (RM)
HURRICANES, ZONE C OFF CORPUS CHRISTI, TEX.
FOWARD SPEED 10 KNOTS
(HUR. 7-45)

Distance Scale is in Terms of
Radius to Region of Maximum Winds (R)
(See Text)
* Wind Center
Fig. 4. AZIMUTH DISTRIBUTION OF HURRICANE PATHS IN ZONE 1900-1956
MEMORANDUM TO CORPS OF ENGINEERS
HUR 7-43
FROM : Hydrometeorological Section

SUBJECT: Standard Project Hurricane Criteria and Isovel Patterns, East Coast U. S., Zone 3

References: 1. OCE letter of June 6, 1957, "Standard Project Hurricane Isovels for Zone 3 Atlantic Coast" and telephone communications
2. HUR 2-1, Frequency of Central Pressure Indices Along Atlantic Coast, June 18, 1957
3. HUR 2-3, Hurricane Characteristics, Atlantic Coastal Area, June 18, 1957
4. HUR 7-53, Hurricane Criteria for East Coast of United States Comparable to Lake Okeechobee Standard Project Hurricane and Isovel Patterns, June 20, 1957
5. Partial Definite Project Report, Central and Southern Florida Project, Part IV, Supplement 2, Section 2, Design Memorandum, Hurricane Winds Over Lake Okeechobee, Jacksonville District Engineer, Dec. 31, 1953

This memorandum lists parameters of a severe hurricane for zone 3 (figure 1), and contains wind speed patterns for moderate and high speed rate of translation.

Hurricane parameters

Characteristics of extreme hurricanes consistent on meteorological grounds from point to point along the Atlantic Coast were explained and specified in reference 4. These characteristics pertinent to zone 3 are listed in table 1.
Table 1

STANDARD PROJECT HURRICANE CHARACTERISTICS, ZONE 3, EAST COAST U.S.

<table>
<thead>
<tr>
<th>Location (Zone)</th>
<th>Latitude (deg. N.)</th>
<th>CPI (Inches)</th>
<th>Radius of Max. Winds (naut. miles)</th>
<th>Forward Speed (kts)</th>
<th>Representative Max. Wind Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HS</td>
<td>RM</td>
<td>RL</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>27.65</td>
<td>7</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>34</td>
<td>37</td>
<td>27.60</td>
<td>7</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td>35</td>
<td>37</td>
<td>27.56</td>
<td>7</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>35.5</td>
<td>37</td>
<td>27.55</td>
<td>7</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>27.55</td>
<td>7</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>27.57</td>
<td>7</td>
<td>17</td>
<td>35</td>
</tr>
</tbody>
</table>

CPI Central pressure index, estimated minimum pressure
HS Representative small radius to region of maximum winds
RM Representative mean radius to region of maximum winds
RL Representative large radius to region of maximum winds
ST Representative slow speed of translation of hurricane center
MT Representative moderate speed of translation of hurricane center
HT Representative high speed of translation of hurricane center
T Speed of translation of hurricane center
V_gx Maximum theoretical gradient wind computed for each CPI by use of figure 7, HUR 2-3, with P_n = 29.92 inches
V_x Estimated maximum 30 ft wind speed. Computed from V_x = 0.865 V_gx + 0.5T, (T in mph)

Isovel charts

Synthetically derived isovel charts have been developed for the middle of zone 3 at 35.5°N. This was accomplished by computing gradient winds from the pressure parameters, reducing to 30 ft. winds by empirical factors, and finally imposing a moderate degree of asymmetry on the isoveals. The asymmetry factor, added to speeds on the right and subtracted on the left, was (0.5T) cos a, where a was the angle between direction of forward motion and wind direction, and T the forward speed in mph. The curves of highest value of the wind speed from these various steps are shown in figure 2. The resulting patterns for a CPI of 27.55 inches and forward speeds respectively of 17 knots (20 mph) and 35 knots (40 mph) are shown in figures 3 and 4.
A pattern showing the strongest winds in the right rear quadrant was selected as that most likely to occur, according to at least two authors. Isaac Cline in his book "Tropical Cyclones" states that, "the wind velocities are much greater in the right half than in the left half of the cyclone area, and the greatest sustained wind velocities occur as a rule in the right rear quadrant." L. A. Hughes has summarized a large number of reconnaissance flights ("On the Low-Level Structure of Tropical Storms," Journal of Meteorology, December 1952) producing the best and most definitive composite low-level wind speed pattern yet available. The strongest winds are in the right rear quadrant in that pattern. Many variations may occur in the standard isovel pattern of figures 3 and 4. To represent the many patterns that would be reasonable to expect in zone 3, figures 3 and 4 may be rotated with limits of 100° counterclockwise and 50° in a clockwise direction.

Variation of R

The distance scales of figures 3 and 4 are in terms of radius of maximum winds (R). Any R listed in the RM or RL columns of table 1 may be substituted as the distance scale.

Variation of CPI

The isovel patterns of figures 3 and 4 are constructed for a CPI of 27.55 inches. They can be adjusted to other CPI's by multiplying all speeds by factors in table 2.

Table 2

<table>
<thead>
<tr>
<th>CPI inches</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.50</td>
<td>1.01</td>
</tr>
<tr>
<td>27.55</td>
<td>1.00</td>
</tr>
<tr>
<td>27.60</td>
<td>0.99</td>
</tr>
<tr>
<td>27.65</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Variation of forward speed

The forward speed for a project hurricane is chosen within or near the range of forward speeds shown in table 1. Forward speed within these spans can be assumed to be independent of CPI and R. Fast-moving hurricanes are believed to have a greater asymmetry of their wind-speed fields than slow moving storms. The highest speeds are most generally found somewhere in the right half of the storm. These two conditions have been conformed to in developing the patterns of figures 3 and 4 by adding the
forward speed factor described above. This is an empirical approximation and a high degree of refinement of adjusting wind patterns to forward speed is not required; figures 3 and 4 computed respectively for forward speeds of 17 knots (20 mph) and 35 knots (40 mph) can be applied directly to all forward speeds in their respective MT and HT columns of table 1.

Wind direction

The wind direction at 30' for use in conjunction with the speeds of figures 3 and 4 may be approximated from table 5. These directions are shown by arrows on the charts.

Table 3

<table>
<thead>
<tr>
<th>Radius</th>
<th>Deflection angle*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius R to center</td>
<td>20°</td>
</tr>
<tr>
<td>R to 1.2 R</td>
<td>Transition 20° to 25°</td>
</tr>
<tr>
<td>1.2 R and beyond</td>
<td>25°</td>
</tr>
</tbody>
</table>

*Angle between true wind direction and a tangent to a circle with center at the storm center.

Critical path

The path for a project hurricane is selected on the basis of the configuration of the coast or inlet concerned, within the span of directions that are shown to be common on the azimuth chart of past hurricane paths in the zone, figure 5 (reproduced from figure 10, HUR 2-3).

Severe hurricanes have been observed to move from bearings of 90° through 210° within the zone, weaker tropical storms have traveled over a greater range of bearings. Any MT or HT forward speed in table 1 may be combined with any path bearing between 120° and 210°. Combination of HT forward speeds with more easterly bearings would require further study.

Adjustment for filling over land

The critical path may pass partly over land. This would hold for Chesapeake Bay, and other places. The normal weakening of a hurricane over land may be approximated by reducing the open-sea wind speed values by the following factors; based on the time elapsed since the storm center crossed the coast:
Table 4

FACTORs FOR REDUCING HURRICANES FOR FILLING OVER LAND

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Adjustment ratio for wind speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (at coast)</td>
<td>1.00</td>
</tr>
<tr>
<td>T plus 1</td>
<td>0.93</td>
</tr>
<tr>
<td>T plus 2</td>
<td>0.88</td>
</tr>
<tr>
<td>T plus 3</td>
<td>0.85</td>
</tr>
<tr>
<td>T plus 4</td>
<td>0.82</td>
</tr>
<tr>
<td>T plus 5</td>
<td>0.80</td>
</tr>
<tr>
<td>T plus 6</td>
<td>0.78</td>
</tr>
<tr>
<td>T plus 7</td>
<td>0.76</td>
</tr>
<tr>
<td>T plus 8</td>
<td>0.74</td>
</tr>
</tbody>
</table>

The above will yield over-water speeds in portions of the storm that are still over water. Further reductions would be required to obtain the speeds over land.

Adjustment of wind speeds near shore

If speeds over the water near the shore line are critical, the reduction of speeds at the 30-ft level by friction may be approximated as follows: reduce on-shore winds at the shore to 0.89 of the over-water value; accomplish this reduction over a transition zone of two or three miles. For off-shore winds, at the shore reduce to 0.70 of the over-water value, with a "speed-up" to over-water value in about ten miles.

Comparison of synthetic isovels with past storms

The most severe storm of record to pass close to the coast at Cape Hatteras was the hurricane of September 14, 1944. Hurricane Hazel of 1954 was the most severe hurricane to strike the Carolina coast in the southern part of the zone. Parameters for these two are listed in table 5 and may be compared with the parameters of synthetic hurricanes in table 1.

The hurricane of September 1938 and Edna of 1954 passed sufficiently far off shore at the latitude of zone 3 that parameters are not well established. The hurricane of 1938 may have been of equal severity with the 1944 hurricane and Edna was also a severe storm at that latitude.
<table>
<thead>
<tr>
<th>Date</th>
<th>Latitude (deg. N)</th>
<th>CPI (Inches)</th>
<th>R (naut. mi.)</th>
<th>Forward Speed (knots)</th>
<th>Max. 30' Wind (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 14, 1944</td>
<td>35</td>
<td>27.88</td>
<td>49</td>
<td>23</td>
<td>107*</td>
</tr>
<tr>
<td>Oct. 15, 1954</td>
<td>34</td>
<td>27.66</td>
<td>14</td>
<td>26</td>
<td>90*</td>
</tr>
</tbody>
</table>

*estimated from pressures distribution.

Charles S. Gilman, Chief
Hydrometeorological Section
FIG. 1
ATLANTIC COASTAL ZONES FOR
HURRICANE FREQUENCY

ZONE 4
ZONE 3
ZONE 2
ZONE 1

50 miles inland and 150 miles off shore.
Figure 2

RELATION OF MAXIMUM WIND SPEEDS TO CENTRAL PRESSURE INDEX, SYNTHETIC ISOVEL PATTERNS, ZONE 3

a Computed maximum gradient wind with $P_n = 29.92$ inches

b 36% of curve a

c curve b plus $\frac{T}{2}$ (T = 17 knots or 20 mph)

d curve b plus $\frac{T}{2}$ (T = 35 knots or 40 mph)

T Forward speed of storm

MAXIMUM WIND SPEED (mph)

27.00 27.10 27.20 27.30 27.40 27.50 27.60 27.70 27.80 27.90 28.00

CENTRAL PRESSURE INDEX (CPI) (inches)
FIGURE 3
STANDARD PROJECT HURRICANE
30-FT. OVER-WATER WIND SPEED FOR LARGE RADIUS (RL.) AND MEDIUM RADIUS (RM.) HURRICANES. ZONE 3 AT 35.5° N. LAT.
FORWARD SPEED 17 KTS. (20 MPH)
(HUR. 7-43)

Limits of Direction of Forward Motion

Direction of Forward Motion

Distance Scale in Terms of Radius to Region of Maximum Winds (R) (See Text)
Figure 4

STANDARD PROJECT HURRICANE
30-FT. OVER-WATER WIND SPEED FOR
LARGE RADIUS (RL.) AND MEDIUM RADIUS (RM)
HURRICANES. ZONE 3 AT 35.5° N. LAT.
FORWARD SPEED 35 KT. (40 MPH.)
(HUR. 7-43)

Direction of Forward Motion

Distance Scale in Terms of Radius to Region of Maximum Winds (R) (See Text)
× Wind Center
Fig. 5. AZIMUTH DISTRIBUTION OF PATHS FOLLOWED BY HURRICANES IN ZONE 3 (1887-1956)

SEVERE OCCURRENCES
(central pressure index less than 29 inches)
ALL HURRICANES

Number of occurrences
TO: Mr. A. L. Cochran, Civil Works
Office of Chief of Engineers
Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: MEMORANDUM HUR 7-42

MEMORANDUM HUR 7-42, "Standard Project Hurricane Parameters and
Isovels, Mid-Gulf Coast U.S. Zone B, and Standard Project Hurric-
anes Lake Pontchartrain, La." is herewith transmitted. This was
assigned in paragraph 11b(4) and 11b(5) of notes on conference
held in New Orleans, La., June 15-14, 1957, on hurricane studies
(P.L. 71).

It will be noted in Table 3, Parameters of Severe Storms Passing
through Zone B, that the maximum 30-ft. wind speed for the September 29,
1915 hurricane is listed as 99 mph while the maximum value developed
for this storm in MEMORANDUM HUR 7-39 was 105 mph. The lower value used
in Table 3 was arrived at by using one-half the speed of translation
in the asymmetry factor of the storm instead of the total speed of
translation that was used in HUR 7-39. This wind speed value is com-
parable with the 30-ft. wind speed values in Table 1 which were arrived
at by the same method but would make no appreciable difference in the
surges computed for Lake Pontchartrain.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments
12 copies to OCE with attachments
MEMORANDUM HUR 7-42 TO CORPS OF ENGINEERS

FROM : Hydrometeorological Section

SUBJECT: Standard Project Hurricane Parameters and Isovels, Mid-Gulf Coast U.S., Zone B, and Standard Project Hurricane, Lake Pontchartrain

References: (1) Notes on conference held in New Orleans, La., June 13-14, 1957, re hurricane studies (P.L. 71) paragraphs 11b(4) and 11b(5).
(2) MEMORANDUM HUR 2-4, Hurricane Frequency and Correlation of Hurricane Characteristics for the Gulf of Mexico Area, P.L. 71.
(3) MEMORANDUM HUR 7-40, Louisiana Hurricane of September 29, 1915, transposed to a Critical Track.
(4) Notes on conference between Representatives of OCE and USWB, January 4, 1957 re hurricane studies under P.L. 71.

This memorandum lists parameters and contains a wind speed pattern for a severe hurricane in Zone B (figure 1) on the Gulf Coast of the U.S. and a description of the Standard Project Hurricane for Lake Pontchartrain as requested in reference (1). The purposes of this memorandum, prepared by the Hydrometeorological Section in close consultation with the OCE, are analogous to Memorandum HUR 7-33 for Zone 4 on the East Coast and HUR 7-43 for Zone 3.

STANDARD PROJECT HURRICANE FOR ZONE B

Hurricane parameters

Hurricane parameters and characteristics used in this memorandum are explained in detail in HUR 2-4. Characteristics of an extreme hurricane in various parts of Zone B are listed in Table 1 and are consistent on meteorological grounds from point to point along the coast. The central pressure index (CPI) selected as representative of a Standard Project Hurricane and pertaining to each location along the coast was taken from figure 5 of reference 2 along the CPI curve indicating an average return
Table 1

PARAMETERS OF SEVERE SYNTHETIC HURRICANES IN ZONE B

<table>
<thead>
<tr>
<th>Zone</th>
<th>Mile (From Fig. 5 HUR 2-4)</th>
<th>Location</th>
<th>Near City or other landmark</th>
<th>CPI (inches)</th>
<th>Radius of Maximum Winds (nautical miles)</th>
<th>Forward Speed (knots)</th>
<th>Representative Max. Wind Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RS RM RL</td>
<td>ST MT ET</td>
<td>V_{gx} V_{x}</td>
</tr>
<tr>
<td>B</td>
<td>900</td>
<td>Apalachicola, Fl.</td>
<td></td>
<td>27.55</td>
<td>7 14 27</td>
<td>4 11 28</td>
<td>108 102</td>
</tr>
<tr>
<td></td>
<td>840</td>
<td>Grayton Beach, Fl.</td>
<td></td>
<td>27.58</td>
<td>7 14 28</td>
<td>4 11 28</td>
<td>108 101</td>
</tr>
<tr>
<td></td>
<td>780</td>
<td>Pensacola, Fl.</td>
<td></td>
<td>27.59</td>
<td>7 14 29</td>
<td>4 11 28</td>
<td>108 101</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>Mobile, Ala.</td>
<td></td>
<td>27.60</td>
<td>7 14 30</td>
<td>4 11 28</td>
<td>107 101</td>
</tr>
<tr>
<td></td>
<td>660</td>
<td>New Orleans, La.</td>
<td></td>
<td>27.60</td>
<td>7 14 29</td>
<td>4 11 28</td>
<td>108 101</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>Lake Barre, La.</td>
<td></td>
<td>27.59</td>
<td>7 14 29</td>
<td>4 11 28</td>
<td>108 101</td>
</tr>
<tr>
<td></td>
<td>540</td>
<td>March Island, La.</td>
<td></td>
<td>27.58</td>
<td>7 14 29</td>
<td>4 11 28</td>
<td>108 101</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>Grand Chenier, La.</td>
<td></td>
<td>27.56</td>
<td>7 14 28</td>
<td>4 11 28</td>
<td>108 102</td>
</tr>
</tbody>
</table>

*For R = 30 nautical miles, and forward speed of 10 knots (12 mph). Varies slightly with changes in these parameters.

CPI Central pressure index
RS Representative small radius to region of maximum winds
RM Representative mean radius to region of maximum winds
RL Representative large radius to region of maximum winds
ST Representative slow speed of translation of hurricane center
MT Representative moderate speed of translation of hurricane center
ET Representative high speed of translation of hurricane center

**V_{gx}
Maximum theoretical gradient wind computed for each CPI by use of fig. 13, HUR 2-4, with P_{n} = 29.92 in.

V_{x} Estimated 50-ft speed in region of highest speeds. Computed from V_{x} = 0.885 V_{gx} + 0.7T, where T is forward speed in mph.

period of one hundred years. These are consistent with the representative Standard Project Hurricanes for the East Coast and Lake Okeechobee.

For the small radius (RS), medium radius (RM), and large radius (RL) corresponding to the CPI, figure 8 of HUR 2-4 was used as a guide, while the characteristic slow (ST) moderate (MT), and high forward speeds (HT) are from figure 11.

Isovel chart

A synthetically derived isovel chart has been developed for Zone B off the coast south of New Orleans, La., near the center of the zone. This was accomplished by computing gradient winds from the pressure parameters, reducing them to 30-ft. winds by empirical factors and imposing a degree of asymmetry on the isovels. The asymmetry factor, added to speeds on the right and subtracted on the left, was \((0.7) \cos \alpha \), where \(\alpha \) was the forward motion of the storm and \(\alpha \) the angle between direction of forward motion and wind direction. The curves of highest value of the wind speed from these various steps are shown in figure 2. The resulting pattern for a CPI of 27.60 inches and a forward speed of 10 knots is shown in figure 3.

Variation R

The distance scale of figure 3 is in terms of \(R \). Any \(R \) listed in table 1 may be substituted as the distance scale.

Application to other Zone B locations

The maximum CPI variation in table 1 for Zone B is only 0.05 inches. The wind speed difference due to varying the CPI over this range is about 1\%. Therefore the wind speed pattern shown in figure 3 can be employed anywhere in Zone B.

Variation of forward speed

The forward speed for a project hurricane is chosen within or near the range of forward speeds shown in table 1. Forward speed within these spans can be assumed to be independent of CPI and \(R \). Fast moving hurricanes are generally believed to have a greater asymmetry of their wind speed fields than slow-moving storms. The highest speeds are generally found somewhere in the right half of the storm. These two conditions have been combined to in developing the pattern of figure 3 by adding the forward speed factor described under "isovel chart." This is an empirical approximation and a high degree of refinement of adjusting wind patterns to forward speed is not required; figure 3, computed for a forward speed of 10 knots or approximately the average forward speed of the zone, is applicable for 1/2 to twice this forward speed.
An investigation of forward speed in relation to latitude in the Gulf Coast area showed no significant relationship in contrast to the latitudinal variation found along the Atlantic Coast.

Wind direction

The wind direction for use in conjunction with the isovel pattern of figure 3 may be approximated from table 2 factors. These directions are shown by arrows on the chart.

Table 2

<table>
<thead>
<tr>
<th>Radius</th>
<th>Deflection Angle*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius R to center</td>
<td></td>
</tr>
<tr>
<td>R to 1.2 R</td>
<td>Transition 20° to 25°</td>
</tr>
<tr>
<td>1.2 R and beyond</td>
<td>25°</td>
</tr>
</tbody>
</table>

*Angle between true wind direction and a tangent to a circle with center of the storm at the center.

Critical path

The path for a project hurricane is selected on the basis of the configuration of the coast or inlet concerned, within the span of directions that are shown to be common on the azimuth chart of past hurricane paths in the zone, figure 4. Most hurricanes pass through Zone B from the south and southeast, a smaller number from the southwest. There is no evidence of a correlation between hurricane intensity and path.

Comparison of synthetic isovels with past storms

Four of the most severe storms of record to pass through Zone B were the hurricanes of October 1, 1893; September 29, 1915; September 19, 1947; and September 8, 1900. The hurricane parameters for these storms are listed in Table 3 and may be compared with the parameters of synthetic hurricanes in Table 1. The hurricane of September 8, 1900 passed sufficiently far offshore that its parameters were not determined in the zone. The parameters listed for this last hurricane are near Galveston.
Table 3
PARAMETERS OF SEVERE STORMS PASSING THROUGH ZONE B

<table>
<thead>
<tr>
<th>Date</th>
<th>CPI (inches)</th>
<th>R (nau.mi.)</th>
<th>Forward speed (knots)</th>
<th>Maximum wind at 30 ft. (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 1, 1893</td>
<td>28.22</td>
<td>17</td>
<td>7</td>
<td>81 (estimate-HUR 7-17)</td>
</tr>
<tr>
<td>Sept. 8, 1900</td>
<td>27.64</td>
<td>14</td>
<td>10</td>
<td>88 (estimate-HUR 7-36)</td>
</tr>
<tr>
<td>Sept. 29, 1915</td>
<td>27.70</td>
<td>26</td>
<td>10</td>
<td>99 (estimate from $V_x = 0.885 V_{ex} + 0.3T$)</td>
</tr>
<tr>
<td>Sept. 19, 1947</td>
<td>28.53</td>
<td>28</td>
<td>17</td>
<td>89 (estimate-HUR 7-37)</td>
</tr>
<tr>
<td>Sept. 29, 1915</td>
<td>27.70</td>
<td>26</td>
<td>4-12</td>
<td>99 (HUR 7-40)</td>
</tr>
</tbody>
</table>

Adjustment for filling overland

The critical path may pass partly overland. The normal weakening of a hurricane over land can be approximated by reducing the open sea wind speed values by the following factors, taken from Table 4, HUR 7-43 which are based on the time elapsed since the storm center crossed the coast.

Table 4
FACTORS FOR REDUCING HURRICANES FOR FILLING OVER LAND

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Adjustment ratio for wind speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (at coast)</td>
<td>1.00</td>
</tr>
<tr>
<td>T + 1</td>
<td>0.93</td>
</tr>
<tr>
<td>T + 2</td>
<td>0.88</td>
</tr>
<tr>
<td>T + 3</td>
<td>0.85</td>
</tr>
<tr>
<td>T + 4</td>
<td>0.82</td>
</tr>
<tr>
<td>T + 5</td>
<td>0.80</td>
</tr>
<tr>
<td>T + 6</td>
<td>0.78</td>
</tr>
<tr>
<td>T + 7</td>
<td>0.76</td>
</tr>
<tr>
<td>T + 8</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Storms moving inland over flooded areas or over marshy land and lakes will fill at a lesser rate, comparable to the rate of filling that occurred in the September 29, 1915 hurricane. The factors to reduce the open-sea wind speed values in these cases are given in Table 5, taken from Table 1, HUR 7-40.
Table 5
FACTORs FOR REDUCING HURRICANES FOR FILLING
OVER FLOODED OR MARSHY LAND AREAS

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Adjustment ratio for wind speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (at coast)</td>
<td>1.00</td>
</tr>
<tr>
<td>T + 1</td>
<td>0.99</td>
</tr>
<tr>
<td>T + 2</td>
<td>0.99</td>
</tr>
<tr>
<td>T + 3</td>
<td>0.98</td>
</tr>
<tr>
<td>T + 4</td>
<td>0.97</td>
</tr>
</tbody>
</table>

The factors in Tables 4 and 5 will yield speeds for portions of the storm that are still over water. Further reductions would be required to obtain the speeds over land.

STANDARD PROJECT HURRICANE FOR LAKE PONTCHARTRAIN, LA.

The isovel pattern of the Standard Project Hurricane for Zone B, figure 3, is nearly identical with the isovel pattern for the September 29, 1915 hurricane transposed to a critical track for Lake Pontchartrain (HUR 7-40) except that the values of the isovels in figure 3 are 2 percent higher than those in the 1915 hurricane transposed. The Standard Project Hurricane pattern applicable to Lake Pontchartrain with a forward speed and track as shown in HUR 7-40 can be obtained by increasing the isovel values of the 1915 hurricane transposed by 2 percent.

To adjust these isovels to a high forward speed, in excess of 20 knots, add the following factor to speeds on the right and subtract for speeds on the left: \((0.9T - 6) \cos a\), where \(T\) is the forward speed in m.p.h. and \(a\) is defined on page 2.

Charles S. Gilman, Chief
Hydrometeorological Section

attachments
12 to OCE with attachments
Figure 2

RELATION OF MAXIMUM WIND SPEEDS TO CENTRAL PRESSURE INDEX, SYNTHETIC ISOVEL PATTERNS, ZONE B

LEGEND

a - Computed maximum gradient wind with $P_u = 29.92$ in.
b - 68.5% of curve a
c - curve b plus $0.5T$
T - Forward speed of storm in knots
FIGURE 3

30-FT. OVER-WATER WIND SPEED FOR LARGE RADIUS (LR) AND MEDIUM RADIUS (MR) HURRICANES, ZONE B, SOUTH OF NEW ORLEANS, L.A. FORWARD SPEED 10 KNOTS.

Distance in Terms of Radius of Maximum Winds See Text
Fig. 4 AZIMUTH DISTRIBUTION OF HURRICANE PATHS IN ZONE 1900-1956
TO: Mr. A. L. Cochran, Civil Works
Office of Chief of Engineers
Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: MEMORANDUM HUR 7-40, Louisiana hurricane of September 29, 1915, transposed to a critical track

Reference: Notes dated 17 June 1957 on conference held in New Orleans, La., 13-14 June 1957 on hurricane studies (F.L. 71)

In compliance with paragraph 11 b (b) of the above referenced notes, herewith are charts (with explanatory notes) depicting hypothetical wind fields at selected times for the hurricane of September 29, 1915, transposed to a critical track.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments

cc: 2 to OCE with attachments
1 to BEB with attachments

1 to New Orleans WBO with attachments
MEMORANDUM HUR 7-40

FROM: Hydrometeorological Section

SUBJECT: Louisiana Hurricane of September 29, 1915, transposed to a critical track

References: HUR 7-39, August 16, 1957
Notes dated 17 June 1957 on conference held in New Orleans, La. 13-14 June 1957, on hurricane studies (P.L. 71)

Movement along critical track

The hurricane of September 29, 1915, has been transposed to the critical path shown in figure 1, as adopted at the referenced conference. This track was quite similar to the one worked up by the New Orleans Weather Bureau Office at the request of the Hydrometeorological Section. The hypothetical speed of the center along the track was reduced to 4 knots during a one-hour period at the point of recurvature. Such a speed was about the slowest observed at recurvature in an examination of many storm tracks in the vicinity of Lake Pontchartrain (HUR 7-38, table 1). The speed of the storm was decelerated while approaching the point of recurvature by a factor of 0.95 per hour and accelerated after recurvature by a factor of 1.1 per hour. The application of these factors gave a movement of approximately 150 nautical miles during the 24-hour period encompassing recurvature, which was approximately equal to the respective minimum movement measured along 29 storm tracks in the vicinity, as shown in Tracks of Tropical Storms, 1887-1956 (HUR 1-1).

Variation of central pressure along critical track

The variation of central pressure with time along the critical track was chosen midway between the average variation found in 3 Florida storms and the mean observed in several storms moving over land but toward water. This choice was influenced by the fact that the critical track of figure 1 is roughly parallel to the coastline. The resultant variation in P0 for the transposed storm is shown in figure 2. The
pressure profile of figure 2b, HUR 7-39, is applicable to the transposed storm at the time of landfall of the center.

Adjustments to the mean over-water wind-speed profile

The average over-water wind-speed profile evolved in HUR 7-39 for the storm as it occurred was applicable to the transposed case at landfall, without alteration. Adjustment factors for the speed profiles at other selected times prior to and succeeding landfall were calculated according to the procedures used in HUR 7-39. The new adjustment factors are listed in table 1.

A constant speed of 6 knots for the storm center (rather than the exact speeds from figure 1) was used in calculating the contribution of storm movement to the actual wind speeds. Otherwise, the various adjustments and corrections applied in HUR 7-39 were repeated without alteration.

Final wind fields

The resultant wind fields in final form have been reproduced in figures 3 through 12, inclusive.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments
CC: 2 to OCE with attachments
1 to BEB with attachments
1 to New Orleans WBO with attachments
FIG. 1
CRITICAL TRACK ADOPTED FOR TRANSPORTED HURRICANE OF SEPTEMBER 29, 1915

HYPOTHETICAL SPEED OF TRANSLATION OF CENTER OF HURRICANE (IN KNOTS)
IS INDICATED OPPOSITE EACH SEGMENT OF TRACK. EACH SEGMENT REPRESENTS
DISTANCE TRAVELLED BY CENTER IN 1 HOUR.
FACTOR USED FOR INCREASE IN TRANSLATION AFTER RECURRENCE: 1.1
FACTOR USED FOR DECREASE IN TRANSLATION PRIOR TO RECURRENCE: .90

MISSISSIPPI DELTA-L PONTCHARTRAIN
COAST LINE 18 CHARTS
<table>
<thead>
<tr>
<th>Hour (with respect to landfall)</th>
<th>Factor (ratio of speeds at respective hours to speeds at landfall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td>1.03</td>
</tr>
<tr>
<td>-5</td>
<td>1.03</td>
</tr>
<tr>
<td>-4</td>
<td>1.02</td>
</tr>
<tr>
<td>-3</td>
<td>1.02</td>
</tr>
<tr>
<td>-2</td>
<td>1.01</td>
</tr>
<tr>
<td>-1</td>
<td>1.01</td>
</tr>
<tr>
<td>Landfall</td>
<td>1.00</td>
</tr>
<tr>
<td>+1</td>
<td>.99</td>
</tr>
<tr>
<td>+2</td>
<td>.99</td>
</tr>
<tr>
<td>+3</td>
<td>.98</td>
</tr>
<tr>
<td>+4</td>
<td>.97</td>
</tr>
<tr>
<td>+5</td>
<td>.97</td>
</tr>
<tr>
<td>+6</td>
<td>.95</td>
</tr>
<tr>
<td>+7</td>
<td>.94</td>
</tr>
<tr>
<td>+8</td>
<td>.93</td>
</tr>
<tr>
<td>+9</td>
<td>.92</td>
</tr>
<tr>
<td>+10</td>
<td>.91</td>
</tr>
<tr>
<td>+11</td>
<td>.89</td>
</tr>
<tr>
<td>+12</td>
<td>.88</td>
</tr>
<tr>
<td>+13</td>
<td>.87</td>
</tr>
<tr>
<td>+14</td>
<td>.85</td>
</tr>
</tbody>
</table>
MEMORANDUM: HUR 7-17

FROM: Hydrometeorological Section

SUBJECT: Hurricane of September-October 1893 in Louisiana

The subject hurricane produced one of the severest hurricane inundations in the history of Louisiana. Enclosed for the information of the New Orleans District and other offices concerned is the study of this hurricane we carried out in connection with our New-Orleans-Lake Pontchartrain assignment (memo from OCE July 13, 1956). The study was directed at determining parameters for the storm (P₀, R, etc.) and the severity of the wind circulation as compared with more recent hurricanes. The data are inadequate for positive conclusions on the severity. However the weight of the evidence is that the hurricane of 1893 at the time it inundated Grand Isle and crossed the Mississippi Delta was no more severe than the greatest hurricane since that time (September 29, 1915).

Charles S. Gilman, Chief
Hydrometeorological Section

Enclosures
cc: 2 with enclosures to OCE
 1 with enclosure to BKB
INTRODUCTION

The hurricane of September 27-October 5, 1893, caused one of the greatest hurricane disasters in the history of Louisiana. Few weather records are available for the period from stations that were within the path of the storm. Nevertheless, the path of the storm was reconstructed using the sparse data, and values for the central pressures, gradient winds, and winds at anemometer level over water were calculated for several times in order to show the intensity of the factors which caused this disaster.

The hurricane formed in the Caribbean Sea then moved northward across the center of the Gulf of Mexico (figure 1). It approached the Louisiana coast unexpectedly, on Sunday, October 1, 1893, (1) and crossed the Mississippi River Delta near Bastian Bay, La., between 2300-0100E, October 1-2. The hurricane then moved northeastward up the coast of eastern Louisiana through Brevinton and Chandeleur Sounds and passed inland between Biloxi and Pascagoula, Miss. at about 1000E on October 2. An intense storm of less than average diameter, the hurricane caused 2000 deaths along the Louisiana coastal areas and along the Mississippi and Alabama coasts. As the hurricane passed through Plaquemines Parish, La., Mr. Kerkam, Secretary of the Louisiana State Weather Service, estimated the winds to be as high as 100mph. (1)

Destruction from the wind was great; houses were smashed, people were killed by flying debris as they rushed into the night to escape from their collapsing flooded homes, the orange and sugar crops were ruined, rice in the fields was battered as though threshed, harvested rice stored along the levees was blown into the river. Nothing was left standing on Grand
Isle and no house in Plaquemines Parish was undamaged. Although the destruction from the wind was great, flooding and sea surges caused even greater damage and loss of life. (2)

The greatest loss of life occurred at Cheniere Caminada, a fishing village on a low-lying spit of land just west of Grande Isle on Caminada Bay. 1650 persons out of a population of 1600 perished there. A strong south wind had blown throughout the day on October 1, backing up the Gulf waters into Caminada Bay and the adjoining bays and bayous, flooding the marsh lands and nearby prairies. The water rose to five feet above its usual level in the bays and when it was at that height the wind changed to the northeast. "...This blew the water from the Gulf through Caminada Pass. Here the outgoing rush of water was met by the sea. The meeting of waters caused a perfect wall of water to be raised. The waters rose to a height of twenty feet and swept everything before them." (3)

South of New Orleans in the vicinity of Porte-a-la-Hache shortly after midnight on October 1, the winds blew so violently out of the east-northeast that in some places the waters of the Mississippi rose 9 feet and poured over the levees. After a calm the hurricane winds blew from the west and, according to newspaper accounts, the water from the Gulf and its bays rose fifteen feet and swept away the fishing hamlets along the coast and poured over the levees into the river. It inundated the highest orange groves and the railroad to a depth of four feet. (2, 4)

The storm moved up the eastern Louisiana shore the morning of October 2, inundating the Chandeleur Islands and the islands along the Mississippi coast and causing great damage to coastal shipping. It was estimated that at least 350 craft were wrecked. (5) Waves washed away sections of the beach, undermined the L & N track and destroyed sixty sections of the railroad bridge over Biloxi Bay. In Mobile Bay where the water rose rapidly to eight feet above tide (as much as 2 feet in 1/2 hour) the flood was the
worst experienced there up to that time. The extreme speed of the wind at Mobile was reported to be 80 mph. The marshes around Mobile were flooded and all the houses in them destroyed. Seven persons lost their lives. (6)

The storm struck Pensacola, Fla., at about 4:45 a.m. on October 2, with the wind reaching its maximum velocity, 66 mph from the southwest, at 3:45 p.m.

OBSERVATIONS

Port Eads, La.

Since many recording instruments in the path of the hurricane were blown down as it passed, no complete history of the winds and pressures is available. The instruments at Port Eads were destroyed and no observations were recorded for the storm period after the 8 p.m. observation on October 1. The station pressure at that time was 29.65 in. and the wind 24 mph from the southeast. The hurricane was centered west-southwest of the station.

New Orleans, La.

A fairly symmetrical trace was made by the recording barograph at New Orleans as the center of the storm passed within 45 miles of the city at about 0345E on October 2. (figure 2) The pressure had fallen steadily to a low of 29.32 in. MSL by that time from a pressure of 29.81 in. at noon of the previous day. The instruments recording wind speeds became inoperative at 20.52E on October 1. The wind at that time was 30 mph from the northeast with gusts to 35 mph recorded on the triple register. West End, north of the city on Lake Pontchartrain, registered winds of 65 mph (uncorrected) before the instrument became inoperative. (1) The 10-minute-average wind speeds for New Orleans are shown in figure 7.

Moss Point, Miss.

A pressure fall from 29.70 in. at 0600E on October 2 to 28.65 in. at
1030E (1.10 inch in 4-1/2 hours) was reported by the captain of a schooner lying at anchor at Moss Point, Miss., close to the storm track. The captain reported that the wind blew strongly from the east-southeast and east until 1030E when it gradually veered to south-southwest, and then strongly from the west-southwest and west at 1200E. The wind did not veer north of west until sometime during the night. It cleared after 1600E and by 2100E the wind was nearly calm. (1) Table 1 shows the values reported by the ship.
<table>
<thead>
<tr>
<th>Time (EST)</th>
<th>Pressure (Inches)</th>
<th>Remarks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>29.70</td>
<td>"Blowing heavy from ESE"</td>
</tr>
<tr>
<td>07</td>
<td>29.30</td>
<td>"Wind SE by E"</td>
</tr>
<tr>
<td>08</td>
<td>29.00</td>
<td>"No change in the wind"</td>
</tr>
<tr>
<td>09</td>
<td>28.85</td>
<td>"Heavier and heavier"</td>
</tr>
<tr>
<td>1030</td>
<td>28.65</td>
<td>"Wind abated nearly to calm and gradually went around by south to southwest"</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>"Came out heavy from west-southwest and west"</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>"Cleared away"</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>"Nearly calm"</td>
</tr>
</tbody>
</table>

*Quoted from the description of the storm by Henry M. Daview, Captain of the Schooner B. Frank Neally."(1)"
Mobile, Ala.

The cutter Forward anchored in Mobile Bay about 35 miles northeast of Moss Point reported that "the barometer fell 71 points in five hours from seven o'clock in the morning until noon." (7)

At Mobile the storm was reported to have begun without warning at about 0400E on October 2 and ended at 1800E. (8) A southeast gale was reported by 0830E with a maximum wind of 72 mph (uncorrected) from the southeast. The 10-minute-average wind speeds for Mobile on October 2 are shown in figure 7. The lowest pressure observed at Mobile during the storm, 29.16 in. MSL, occurred at 1500E (figure 2). After that the pressure began to rise rapidly and by 2000E it was 29.53 in. The wind had shifted to the west at that time.

Pensacola, Fla.

At Pensacola, Fla., the storm struck at about 0445E on October 2. Wind throughout the morning was from the south at 34 to 40 mph; the maximum velocity observed at Pensacola was 66 mph from the southwest at 1545E. (1) The lowest pressure observed here, 29.47 in., occurred at 1645E (figure 2), at which time the hurricane had moved inland to a point about 65 miles northwest of Pensacola (figure 5).

Once inland, the hurricane moved slowly northeastward over Georgia to Cape Hatteras.

RECONSTRUCTING THE TRACK

The track of the storm for the period 2000E October 1 to 1700E October 2 was reconstructed, using the limited data available from stations within 100 miles of the path of the storm as it moved inland, descriptions of the storm and of the storm damage as reported in the Monthly Weather Review and newspaper accounts of the times, and using the procedures described in Chapter I, Hydrometeorological Report No. 32, (9). Gradient
wind speeds and the speed of the wind at anemometer level over water were computed using the reconstructed track.

Sea-level pressures

A graph of the sea-level pressures for stations within 100 miles of the path of the storm as it moved across Louisiana and into Alabama was drawn using a common time scale (figure 2). A barograph trace was available for New Orleans, but pressures for Port Eads, La.; Mobile, Ala.; Pensacola, Fla.; and Meridian, Miss., were taken from W. B. Form 1001. The ship report of barometer readings at Moss Point, Miss. was also included.

Lines of position from pressure

The times of intersection of any two pressure traces on the Sea-level Pressure Graph (figure 2) and the time of minimum pressure for each station were noted. Perpendicular bisectors of chords drawn between stations whose pressure traces intersected were used as lines of position of the track. The assumption that the hurricane is circular requires that the center of the storm lie on the bisectors at the designated times. Perpendicular lines from each station, labeled with the time of the station minimum pressure, were drawn to the track and adjusted as the track was laid out. If the hurricane were circular the center of the storm would lie at the end point of these lines at the time of minimum pressure.

Wind shift analysis

Further adjustments to the path were made using distances from a station at hourly intervals taken from a wind-direction graph (figure 3) drawn from data taken from autographic wind-direction records. (New Orleans was the only station considered in this study that had autographic records of both wind speed and wind direction.) Hourly position checks were laid out on
the path and a vector was drawn for that section of the path that covered
the period during which a wind shift occurred at New Orleans. The hourly
positions were marked on the vector. This vector was traced on a polar dia-
gram whose center represented the station in such a way that the time checks
fell on the polar azimuth lines corresponding to the direction of the wind
at New Orleans at the check times. Distances from the center of the polar
diagram to the hourly positions were scaled off, laid out on the graph, and
used to check the distance of the storm center from New Orleans at those times.

Preliminary track

Hourly positions of the hurricane center were plotted on a map using
the pressure and wind-derived lines of position and giving weight to material
on the storm in the Monthly Weather Review for October 1893 and descriptions
of the storm in the Mobile Daily Register and New Orleans Times-Democrat of
that time.

First approximation of pressure profiles

Distances from the pressure-reporting stations to the hourly positions
of the track were scaled off. Hourly and minimum pressures for each station
read from the pressure-time graph were plotted on a graph against the distance
of the station from the hurricane center. Pressure profiles for 0000E, 0400E,
1000E, and 1400E were drawn to these curves.

Final track

Using the pressure profiles, the distance from the station to the storm
center at hourly intervals was read from the graph for each station. Arcs
were then drawn along the hurricane track with these distances as radii and
the stations as centers. The intersection of the arcs for each hour were
considered in the final adjustment of the track.

The final revised track differed from the track shown in the October 1893
Monthly Weather Review in that it entered the southeastern Louisiana coast
from the south instead of the southwest and a few miles further east (figure 5). After crossing the peninsula and following the Louisiana coastline northeastward, the final hurricane track entered the mainland about 13 miles west of the track shown in the Monthly Weather Review.

Final pressure profile

In fitting the first pressure profile to the station traces it was difficult to reconcile the pressure trace at Moss Point with that at Mobile. Because of this, the track was redrawn to show the center of the hurricane passing inland 13 miles west of Moss Point instead of at Moss Point. Hourly distances of the stations from the track were rescaled and a final pressure profile was drawn (figure 6).

Exponential pressure profile

An exponential pressure profile derived from the equation

\[P = P_0 e^{-R/r} \]

where \(P \) = pressure at radius \(r \)
\(R \) = radius of maximum winds
\(P_0 \) = pressure at the center
\(P_n \) = asymptotic pressure

was drawn for 1000E and 1400E October 2 (figure 7). The value of \(P_0 \) at 1000E on the exponential curve was 28.22 in. and at 1400E increased to 29.17 in.

Gradient wind

The speed of the gradient wind was computed for 1000E and 1400E October 2 and the gradient-wind profile was plotted and compared with the 10-minute-average winds observed at anemometer level at New Orleans and Mobile. In order to obtain a better fit to the plot of the Mobile wind, \(R \) was made smaller, and a new curve was plotted for the gradient wind at 1400E.

Over-water wind at anemometer level

The values of the ratio of the average 10-minute over-water wind to gradient wind were obtained from figure 26, Hydrometeorological Report No. 32,
and used to compute the over-water wind at anemometer level from the gradient wind. Figure 7 compares these values with the average 10-minute wind speeds at anemometer level at Mobile and New Orleans.

Radius of maximum wind

For 1000E October 2, these curves (figure 7) plotted against distance from the center of the storm, give a value of 80 mph for the maximum over-water wind speed at anemometer level. This value, \(V_o \), is 86\% of the value of the maximum gradient wind, \(V_g \), computed from the pressure profile in figure 6. The radius of the maximum wind, \(R \), computed from the pressure field, at 1000E extended 20 miles from the storm center. The 1400E \(V_o \)-curve shows that at that time the winds had decreased and \(R \) had increased. The maximum over-water wind at anemometer level on the 1400E \(V_o \)-curve had decreased to 47 mph. A band of wind above 50 mph extended from 10 miles of the center to 52 miles of the center at 1000E October 2. At 1400E winds of 40 mph or greater extended from 18 to 36 miles of the center.

CONCLUSION

If the hurricane was of the same intensity as it approached Moss Point as it was when it crossed the Mississippi Delta, and if the pressure values reported by the ship at Moss Point were correct, the central pressure during that period is computed as 28.22 in. as shown by the exponential pressure profile in figure 6. The possibility also exists that filling occurred as the storm moved across the Delta to Moss Point and that its central pressure had been even lower as it approached the Louisiana coast. Lack of sufficient wind and pressure data has prevented the computation of wind-field patterns for this storm offshore south of the Mississippi Delta. Pressure and wind profiles constructed for this hurricane from the data available show that
the radius of maximum winds at 1000E October 2 was 20 miles with a maximum wind speed over water at anemometer level of 80 mph (figure 7). Winds of hurricane force (75 mph) prevailed in a band 10 miles wide. Filling occurred after the hurricane moved inland, and the pressure and wind profiles show that by 1400E October 2 the central pressure had risen to 29.17 in. (figure 6) The radius of maximum wind had increased to 27 miles and the maximum wind at anemometer level over water had decreased to 49 mph.

The wind distribution shown in figure 7 agrees with statements that the violent winds in the storm covered a limited area. Although the storm center passed within 45 miles of New Orleans, winds of hurricane force were not reported in the city.

From this analysis it can be inferred that this hurricane was one of the three most intense to pass over the eastern Louisiana coast in the last 65 years. Table I, Hydrometeorological Report 32, gives a lower central pressure for the other two, the hurricanes of September 29, 1915, and September 20, 1926.

Table II below compares values computed for these storms of September 1915 and September 1926 with values computed for the hurricane of October 1893.

<table>
<thead>
<tr>
<th>Hurricane</th>
<th>$P_0 - P_n - P_o$</th>
<th>V_{gx}</th>
<th>V_{ox}</th>
<th>R</th>
<th>R_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 1893 (Miss. coast)</td>
<td>28.22</td>
<td>1.77</td>
<td>94</td>
<td>80</td>
<td>17</td>
</tr>
<tr>
<td>Sept. 1915</td>
<td>27.87</td>
<td>2.27</td>
<td>106</td>
<td>91</td>
<td>29</td>
</tr>
<tr>
<td>Sept. 1926 (Ala. coast)</td>
<td>28.20</td>
<td>1.93</td>
<td>98</td>
<td>84</td>
<td>24</td>
</tr>
</tbody>
</table>
Figures

1. Track of the hurricane of September 27-October 5, 1893
2. Sea-level pressures--October 1-2, 1893
3. Graph of average 10-minute wind directions recorded at New Orleans, La., October 1-2, 1893
4. Final hurricane track
5. Final pressure profiles--October 1-2, 1893
6. Final sea-level pressure profile and exponential pressure profile--October 2, 1893
7. Observed 10-minute average wind speeds and computed wind speeds at anemometer level over water--October 1-2, 1893
References

5. Daily Register, Mobile, Ala., October 7, 1893.
7. Daily Register, Mobile, Ala., October 4, 1893.
OBSERVED 10-MINUTE AVERAGE WIND SPEEDS AND COMPUTED WIND SPEEDS AT ANEMOMETER LEVEL A—OCT. 1-2, 1893

New Orleans, La. (Wind speeds estimated by station between 2200E Oct. 1 and 1000E Oct. 2, 1893)

Mobile, Ala.

Distance from Pressure Center (Statute Miles)
Fig. 1.

Track of the Hurricane of September 27 - October 5, 1993
(Track south of Latitude 29 and east of Latitude 85 taken from the Office of Climatology track of the storm.)
GRAPH OF AVERAGE 10 MINUTE WIND DIRECTIONS RECORDED AT NEW ORLEANS, LA. OCT. 1-2, 1893
MEMORANDUM TO CORPS OF ENGINEERS

HUR 7-42A

FROM: Hydrometeorological Section

SUBJECT: Standard Project Hurricane Isovels for a High Speed of Translation of the Hurricane Center Mid-Gulf Coast, U. S., Zone B.

(2) HUR 7-42, Standard Project Hurricane Parameters and Isovels Mid-Gulf Coast, U. S. Zone B and Standard Project Hurricane, Lake Pontchartrain.

This memorandum contains an isovel pattern for a Standard Project Hurricane in Zone B with a high speed of translation as requested in reference (1).

Isolevel chart

A synthetically derived isovel chart for a Standard Project Hurricane with a CPI of 27.60 in. and a high speed of translation has been developed for Zone B off the coast south of New Orleans, La. This was done by imposing a degree of asymmetry to isotachs of gradient winds computed from pressure parameters and reduced to 30-ft. winds by empirical factors. The asymmetry factor, added to speeds on the right and subtracted from speeds on the left, was \((0.5T) \cos \theta \) where \(T \) was the representative high speed of translation of a Standard Project Hurricane in Zone B, 28 kts. as shown in Table 1, reference (2), and \(\theta \) the angle between the direction of forward motion and the wind direction. Maximum wind at R is 111 mph.

A pattern showing the strongest winds in the right rear quadrant was selected as that most likely to occur by at least two authors. Isaac Cline in his book "Tropical Cyclones" states that "the wind velocities are much greater in the right half than in the left half of the cyclone area, and the greatest sustained wind velocities occur as a rule in the right rear quadrant." L. A. Hughes has summarized a large number of reconnaissance flights ("On the Lower-Level Structure of Tropical Storms", Journal of Meteorology, Dec. 1952) producing the best and most definitive composite low-level wind speed pattern yet available. The strongest winds are in the right rear quadrant in that pattern. Many variations may occur in the standard isovel pattern. To represent the many patterns that it would be reasonable to expect in Zone B, the isovels in the attached figure may be rotated with limits of 100° counter clockwise and 50° in a clockwise
direction. The limits of rotation are indicated on the figure by dashed arrows extending outward from the wind center.

Variation of forward speed

The forward speed for a Standard Project Hurricane is chosen within or near the range of forward speeds shown in Table 1, reference (2). Forward speeds within these spans can be assumed to be independent of CPI and R. The attached isolow pattern computed for a forward speed of 28 knots is the fastest observed 4-hour average speed in the Gulf.

Other factors

Comments on variation in the radius of maximum wind, application to other Zone B locations, wind direction, the critical path, and adjustment for filling over land may be found in reference (2) to which this memorandum is supplementary.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachment

c: 12 to OCE with attachments
1 to RKB with attachments
STANDARD WIND SPEED (MPH) PATTERN
ZONE B, GULF COAST
RATE OF TRANSLATION = 28 KTS.
X-WIND CENTER

Limit of Direction of Forward Motion
TO: Mr. A. L. Cochran, Civil Works Office of Chief of Engineers Corps of Engineers

FROM: Hydrometeorological Section

SUBJECT: MEMORANDUM HUR 7-39, Revised Wind Fields Vicinity of Lake Pontchartrain, Hurricane of September 29, 1915

Transmitted herewith is the Subject Memorandum which includes revised isotachs for the Louisiana Hurricane of 1915 for the information of the New Orleans District. This memorandum supersedes Memoranda HUR 7-15 and 7-28.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments
cc: 3 with attachments to OCE
1 with attachments to OCE
MEMORANDUM NUR 7-39

FROM : Hydrometeorological Section

SUBJECT: Revised wind fields vicinity of Lake Pontchartrain, Hurricane of September 29, 1915

Introduction

This memorandum presents charts of reconstructed wind speeds and directions in the hurricane of September 29, 1915 over Lake Pontchartrain and adjacent waters of the Gulf of Mexico. These charts are revisions of those furnished in Memoranda NUR 7-15 and 7-28. The wind speeds have been revised from the previous charts, mostly to higher values, from the following considerations:

a. The central pressure of the storm was well established close to New Orleans but was not observed near the coast. A revised coastal central pressure was obtained by extrapolation from the New Orleans value. A faster rate of filling was assumed between the coast and New Orleans (lower central pressure at the coast) in the present analysis on the basis of a recently completed empirical study of rates of filling in hurricanes over land.

b. Further study was made of the ratio of observed wind speeds at the New Orleans Weather Bureau Office to probable over-water wind speeds. Comparison of observed speeds at the New Orleans WBO in the 1947 hurricane with better exposed stations in the same storm led to larger adjustment factors than previously employed.

c. Reconsideration indicated that the water surface, which reduces the wind speed less than a land surface, extended beyond the normal boundaries of the Lake and the Gulf during the hurricane. This effect, while slight, was also in the direction of higher wind speeds.

d. The winds over the water surfaces in the storm are of necessity estimated indirectly from pressure and wind data over land, to the extent that such data are available. Another indirect index of the winds is the behavior of water levels. The meteorological data determine the over-water wind speeds only within a certain range; the resulting values are not exact.
Considering the observed water levels qualitatively, the analysts were influenced toward slightly higher wind speeds within the range dictated by the meteorological data.

Track

The track of the storm center (center of lowest pressure) is depicted in figure 1. The center of wind rotation is several miles to the left of the pressure center.

Central pressure

The known information on the central pressure of the hurricane is depicted on a time scale in figure 2a. This includes the minimum observed pressures at the New Orleans Weather Bureau Office and the Ship Cebis in dock at New Orleans. Another ship in the Gulf, which experienced some of the conditions of the eye of the storm, was at an unknown distance from the point of minimum pressure. Also shown in figure 2a are average rates of filling for hurricanes moving inland over extensive land masses, over the Florida Peninsula, and over a land area but with movement back toward a body of water, each of the three curves being projected from New Orleans back to the coast. Several possible variations with time of central pressure are shown by the heavy curves a, b and c. Curve b was considered the most probable and was selected for further computations. An average radial pressure profile for 1200 CST (about the time of landfall) is shown in figure 2b.

Comparison New Orleans WBO wind speeds with other sites

The winds at the New Orleans Weather Bureau Office were appreciably reduced by the friction of the surrounding city. A study was made of the magnitude of this effect, by comparing the New Orleans Weather Bureau Office wind speeds (site had not changed) with wind speeds from nearby stations in other years. Mean daily wind speeds at the New Orleans WBO were compared with the mean daily speeds at the better exposed airport station at Moisant Airport, for all days on which the speeds were 15 mph or higher at the airport for the years 1950-1954. The mean values are plotted as "x's" in figure 4 for northeast winds (the principal high-speed wind direction of the 1947 hurricane), for south-southeast (southeast was the principal high-speed direction in the 1915 hurricane), and for all directions combined. It can be noted that there is no significant directional difference.

For data on high speeds the New Orleans WBO speeds were plotted against speeds at the Weather Bureau Airport Station at Moisant Airport, the Naval Air Station, and the Huey P. Long Bridge in the 1947 hurricane (figure 4). The fact that the stations would be in different parts of the hurricane at a particular time was taken into account by constructing profiles of speed against distance from storm center in the hurricane, and plotting speeds against each other corresponding to equal distances from the storm center. The Huey Long Bridge anemometer is at 165'. The winds here are perhaps 5%
in excess of equivalent speeds at 30' over Lake Pontchartrain. The Naval Air Station speeds were from an off-lake direction in this comparison and are comparable to over-water speeds. The Moisant Airport site requires an adjustment upward of perhaps 5 or 10% to over-water speeds. The comparison of Huey Long Bridge with the WBO is given the most weight, as only these stations had automatic wind registering equipment. The mean ratio of Bridge speeds to WBO in the 1947 hurricane is 1.97 to 1 (by eye in figure 4).

A check was made on changes in the environmental conditions at the New Orleans Weather Bureau Office between 1915 and more recent years. The accumulated mean annual wind speeds at New Orleans are shown plotted against the same variable for Meridian, Miss., in figure 7. It appears that there was a change in environmental conditions associated with moving of the New Orleans station in March 1915, but that there has been no appreciable change since that time. The anemometer height had only been changed one foot at Meridian and moved less than one block prior to 1948, when the Meridian station was moved to the Airport.

Radius of maximum winds

Computation of the radius of maximum winds from the pressure field in the hurricane at various times gave values averaging slightly over 36 statute miles. The apparent radius of maximum winds as determined from the wind speed records at New Orleans offices was 26 statute miles. An average value of 30 statute miles was used in developing the reconstructed wind patterns.

Computed wind fields

A theoretical wind speed called the gradient wind speed may be computed by formulas from the pressures. The maximum value of this theoretical wind speed may be computed from the difference between the central pressure in a hurricane and the pressure near the "outskirts" of the storm. The upper curve of figure 3 depicts the time variation of the maximum gradient speed that was derived from the central pressure variation of curve b, figure 2a, and an outside pressure, p_P, held at the average value of 29.92 inches. In the formulas used the maximum wind speed is proportional to the square root of the difference between outside pressure and central pressure.

Empirical studies have indicated that the maximum 30-foot over-water wind speed is about 86% of the maximum theoretical gradient speed (Lake Okeechobee hurricane 1949) in many instances, but may range from about 70% to 100% of this theoretical value in various hurricanes (Hydrometeorological Report No. 32, page 46).

After weighting all the pertinent data, a reduction factor of 88.5% was tentatively selected for the 1915 hurricane, and is depicted by curve b of figure 3.
The first approximation to a computed 30' over-water wind field was obtained by taking the maximum speeds from the curve b of figure 3 for various times at a radius of 30 statute miles from the center, and determining winds at other distances from the center in proportion to the variation of the wind speed inside and outside the radius of maximum winds observed in the Lake Okeechobee hurricane of 1949 (qualitatively confirmed in many other hurricanes). From such profiles a computed speed could be obtained at any point and at any hour in the range of the hurricane, by adding a component for the forward motion of the storm. Such computed speeds are plotted against observed New Orleans speeds in figure 5. The average ratio of computed 30' over water wind to observed is about 1.83 to 1.0, which has the proper relationship to the WBO-Huey Long Bridge factor of 1.97 to 1. At the only other observing station, Burrwood, La., a comparison of computed with observed wind speeds is depicted in figure 6. Only qualitative correspondence was expected on this diagram because of the unusual nature of the wind speed variation at Burrwood. The large surge of high speed between 1500 and 1700 CST at about 70 nautical miles from the center of the storm was not thought to be representative of the speed distribution in other quadrants of the storm or at other times.

Wind speed charts

Applying all the foregoing considerations the standard wind profile at the coast shown in figure 8 is derived. Variations in the profile for other times are also shown on the figure. This is the average wind profile in all directions from the storm center. The dashed curves show the respective limiting profiles.

Wind speed charts were constructed by applying the profile of figure 8 plus an adjustment for forward motion of the storm plus frictional reduction in the vicinity of shore-lines: a slight decrease on-shore, a slower speed-up for off-shore winds. Attempts were made to estimate where the shoreline was at the various hours, from a chart of maximum flooding during the hurricane. The final wind fields are depicted in figures 9a through 9h inclusive.

Wind directions

A deflection angle of 30° toward low pressure was adopted as a reasonable compromise among the distribution of fluctuations noted in the wind direction at New Orleans. The deflection angle was kept constant at 30° regardless of radial distance or bearing from the center.

Charles S. Gilman, Chief
Hydrometeorological Section

Attachments
3 with attachments to OCE
1 with attachments to BKB
29.72
28.70
1.62 \times 1.14 = 1.82
29.92
29.71
157
FIGURE 1
TRACK OF PRESSURE CENTER
HURRICANE OF
SEPTEMBER 29,1915
C.S.T.
Fig. 2a. DATA CONCERNED WITH VARIATION OF CENTRAL PRESSURE WITH TIME.
HURRICANE OF SEPTEMBER 29, 1915

- Minimum Democrat
- Estimated Storm Pressure
- Minimum Pressure at New Orleans (Local Office)
- Average Rate of Filling In
- II Storms Over Land
 3 Florida Storms
 Several Storms Over Land Moving Toward More Water

Possible Curves of Central Pressure Variation, Curve 6 Selected as Most Plausible

Time: CST, September 29, 1915
Fig. 2b. Reconstructed Pressure Profile, Hurricane of Sept. 29, 1915 1200 CST

Observed Sea-Level Pressures
1. Burwood
2. New Orleans
3. S.S. Kash, in dock at New Orleans
4. Lockport
5. Tulane
6. Morgan City
7. Bay St. Louis (extrapolated)

Approximate pressure profiles for other times may be obtained by plotting the central pressure from curves of figure 1 at zero distance and drawing smoothly into the profile of figure 2 at a distance of 30 to 40 miles.
Fig. 3. Maximum Gradient and Over-water Wind Speeds Versus Time, Hurricane of September 29, 1915

- **a** - Maximum gradient wind computed from central pressure curve b of figure 2.
- **b** - Maximum 30' over-water wind to front and rear of storm (88.5% of curve a), 12 mph higher to right of storm and 12 mph less to left.
Fig. 4. Comparison of Observed Speeds at WBO New Orleans with Other Nearby Stations

Legend:

New Orleans WBO vs. other stations:
- Huey Long Bridge, Automatic Recorder, Anemometer Ht. 165'
- WBAS, Anemometer Ht. 33'
- MAS, Anemometer Ht. 70'
- Estimated
- WBAS Daily Mean Winds Above 15 mph, 1950-54

Approx. mean relation of WBO to Huey Long Bridge.
Fig. 5. Observed vs. Computed Over-Water Wind Speeds, WBO, New Orleans

Compared to the observed winds at the Bayou Bridge in New Orleans, the computed wind speeds appear to underestimate the observed values, especially at higher wind speeds. The observed winds show a more pronounced curve, suggesting a stronger effect of the environment on wind speed.

- **WBO observed vs. computed (over-water)**
- **1915 hurricane**
- **Approx. mean relation**
- **WBO vs. Bayou Bridge, from fig. 4**
Fig. 6. Comparison of Observed with Computed Wind Speeds at Burwood, La., September 29, 1915.

- Observed 15-min. average wind, Anemometer Ht. 32.6 ft.
- Computed 30 ft. over-water wind speed at Burwood site.
FIGURE 7
CUMULATIVE ANNUAL WIND SPEED COMPARISON
WBO NEW ORLEANS VERSUS MERIDIAN, MISS.
Fig. 8. Over-water Wind Speed Profile at Landfall
Hurricane of September 29, 1915

Time Adjustment Factors
(Fractional part of speeds at landfall that give corresponding speeds at other specified times.)

<table>
<thead>
<tr>
<th>Time (CST)</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1.03</td>
</tr>
<tr>
<td>1000</td>
<td>1.02</td>
</tr>
<tr>
<td>1100</td>
<td>1.01</td>
</tr>
<tr>
<td>1200 (Landfall at)</td>
<td>1.00</td>
</tr>
<tr>
<td>1300 (approx. 1230)</td>
<td>0.99</td>
</tr>
<tr>
<td>1400</td>
<td>0.98</td>
</tr>
<tr>
<td>1500</td>
<td>0.97</td>
</tr>
<tr>
<td>1600</td>
<td>0.96</td>
</tr>
<tr>
<td>1700</td>
<td>0.95</td>
</tr>
<tr>
<td>1800</td>
<td>0.93</td>
</tr>
<tr>
<td>1900</td>
<td>0.91</td>
</tr>
<tr>
<td>2000</td>
<td>0.89</td>
</tr>
<tr>
<td>2100</td>
<td>0.85</td>
</tr>
<tr>
<td>2200</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Particular radial profile along which 100% of the forward speed of the storm (12 mph) is additive.

Particular radial profile along which 100% of the forward speed of the storm (12 mph) is subtracted.