The Politics of Smallpox Modeling
Rice University - November 2004

Edward P. Richards, JD, MPH
Director, Program in Law, Science, and Public Health
Harvey A. Peltier Professor of Law
Louisiana State University Law Center
Baton Rouge, LA 70803-1000
richards@lsu.edu

Slides and other info: http://biotech.law.lsu.edu/cphl/Talks.htm

Smallpox Basics
- Pox virus
 - Stable as an aerosol
 - Infectious at low doses
- Human to human transmission through coughing and contaminated items (fomites)
- 10 to 12 day incubation period
- High mortality rate (30%)

Co-Evolution
- Smallpox infects humans only
- Could not survive until agriculture
- No non-human reservoir
- If at any point no one in the world is infected, then the disease is eradicated
- Infected persons who survive are immune, allowing communities to rebuild after epidemics

Eradication
- Driven by the development of a heat stable vaccine
 - 1947 – last cases in the US
 - Smallpox vaccine was given to everyone in the US until 1972
 - Worldwide eradication campaign in the 1970s

Eradication Ended Vaccinations
- Cost Benefit Analysis
 - Vaccine was Very Cheap
 - Program Administration was Expensive
 - Risks of Vaccine Were Seen as Outweighing Benefits
 - Stopped in the 1970s
Complications of Vaccination
- Local Lesion
- Progressive/Disseminated Vaccinia
 - Deadly
- Encephalitis
- Most common in the immunosuppressed

How Have the Risks of Vaccination Changed Since 1970?
- 1970
 - 1/1,000,000 deaths
 - 5/1,000,000 serious complications
 - Immunosuppression was rare in 1970
- 2004
 - Immunosuppression is common
 - HIV, Chemotherapy, Arthritis Drugs
 - Tolerance for risk is much lower

Post Eradication
- 50%+ in the US have not been vaccinated
- Many fewer have been vaccinated in Africa
- Immunity fades over time
 - Everyone is probably susceptible
 - Perhaps enough protection to reduce the severity of the disease

The Danger of Synchronous Infection
- The whole world may be like Hawaii before the first sailors
- If everyone gets sick at the same time, even non-fatal diseases such as measles become fatal
- A massive smallpox epidemic would be a national security threat
- Is a massive epidemic possible?

The Dark Winter Model
- Johns Hopkins Model - 2001
- Simulation for high level government officials
- Assumed terrorists infected 1000 persons in several cities
- Within a few simulated months, all vaccine was gone, 1,000,000 people where dead, and the epidemic was raging out of control

Response to the Dark Winter Model
- Koopman – worked in the eradication campaign
 - “Smallpox is a barely contagious and slow-spreading infection.”
- Lane – ex-CDC smallpox unit director
 - Dark Winter was “silly.” “There's no way that's going to happen.”
Decomposing the Models – Common Factors

- Population at risk
- Initial seed
- Transmission rate
- Control measures under study

Population at Risk

- Total number of people
 - Compartments - how much mixing?
- Immunization status
 - Most assume 100% are susceptible
 - Increasing the % of persons immune to smallpox
 - Reduces the number of susceptibles
 - Dilutes the pool, reducing rate of spread

Transmission Rate

- Mixing Coefficient X Contact Efficiency
- Mixing Coefficient
 - The number of susceptible persons an index case comes in contact with
- Contact Efficiency (Infectivity)
 - Probably of transmission from a given contact
 - Can be varied based on the type of contact

Where do the Models Differ?

Transmission Rate is the Key

- < 1 - epidemic dies out on its own
- 1 - 3 - moves slowly and can be controlled without major disruption
- > 5 - fast moving, massive intervention needed for control
- > 10 - overwhelms the system - Dark Winter

What is the Data on Transmission Rate?

- Appendix I
 - This is all the data that exists
 - The data is limited because of control efforts
 - This data supports any choice between 1 and 10
What are the Policy Implications of the Transmission Rate?

- Can only be prevented by the reinstituting routine smallpox immunization
- Terrible parameters for policy making
 - Huge risk if there is an outbreak
 - Low probability of an outbreak

Kaplan - 5
- Mass immunization on case detection
- Best to pre-immunize health care workers

Metzler/CDC - 2-3
- Contact tracing and ring immunization
 - Trace each case and immunize contacts
 - Immunize contacts of contacts
 - Takes a long time to get the last case

What are the Politics?

- Reinstituting Routine Vaccinations
 - We cannot even get people to get flu shots, which is perfectly safe
 - No chance that any significant number of people will get the smallpox vaccine after the failure of the campaign to vaccinate health care workers
 - Would require a massive federal vaccine compensation program
Mass Vaccinations Post-Outbreak

Pros
- Limits the duration of the outbreak to the time necessary to do the immunizations, could be two weeks with good organization
- Eliminates the chance of breakout

Cons
- Lots of complications and deaths from the vaccine
- Requires massive changes in federal vaccine plans

Contract Tracing and Ring Immunizations

Pros
- Limits the vaccine complications
- Does not require hard policy choice to immunize everyone

Cons
- Requires lots of staff
- Requires quarantine
- Requires lots of time
- Chance of breakout

Political Choices are Hidden in the Models

- Federal policy is based on a low transmission rate
 - Is that justified by the data?
 - Is the potential upside risk too great with this assumption?
- Dark Winter is based on a high rate
 - Do anything and pay anything to avoid bioterrorism
 - Convenient for bioterrorism industries

Which Model Do You Want to Rely On?
Appendix I

Table 23.4 Europe: smallpox outbreaks by generation

<table>
<thead>
<tr>
<th>Serial number</th>
<th>Year</th>
<th>Importing country</th>
<th>Number of imported cases</th>
<th>Indigenous generation</th>
<th>Total number of cases</th>
<th>Infections acquired in hospitals or by other health staff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
<td>Number of cases</td>
</tr>
<tr>
<td>1</td>
<td>1958</td>
<td>Federal Republic of Germany</td>
<td>1 10 6 3 0 0 0</td>
<td>20</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1959</td>
<td>United Kingdom</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1959</td>
<td>German Democratic Republic</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1959</td>
<td>USSR</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1959</td>
<td>USSR</td>
<td>1 19 23 3 0 0 0</td>
<td>46</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1960</td>
<td>United Kingdom</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1961</td>
<td>Spain</td>
<td>1 13 3 0 0 0 0</td>
<td>17</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1961</td>
<td>Federal Republic of Germany</td>
<td>1 2 1 0 0 0 0</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1961</td>
<td>USSR</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1961</td>
<td>Belgium</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1961</td>
<td>USSR</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1961</td>
<td>Federal Republic of Germany</td>
<td>1 2 1 2 0 0 0</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>1961</td>
<td>Federal Republic of Germany</td>
<td>1 3 20 6 3 0 0</td>
<td>33</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1961</td>
<td>United Kingdom</td>
<td>1 0 0 0 0 0 0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1961</td>
<td>United Kingdom</td>
<td>1 1 1 0 0 0 0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1961</td>
<td>United Kingdom</td>
<td>1 10 3 0 0 0 0</td>
<td>14</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>1962</td>
<td>United Kingdom</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>1962</td>
<td>United Kingdom</td>
<td>1 6 18 1 18 2</td>
<td>47</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>1962</td>
<td>Poland</td>
<td>3 11 19 0 0 0 0</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1962</td>
<td>United Kingdom</td>
<td>1 2 0 0 0 0 0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1963</td>
<td>Sweden</td>
<td>1 4 10 7 1 2 2</td>
<td>27</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>1963</td>
<td>Poland</td>
<td>1 2 4 26 44 20 3</td>
<td>100</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>1963</td>
<td>Switzerland</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>1965</td>
<td>Federal Republic of Germany</td>
<td>1 1 0 0 0 0 0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1967</td>
<td>Federal Republic of Germany</td>
<td>1 1 0 0 0 0 0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1967</td>
<td>Czechoslovakia</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>1967</td>
<td>Federal Republic of Germany</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>1967</td>
<td>United Kingdom</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>1968</td>
<td>United Kingdom</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>1968</td>
<td>Belgium</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>1969</td>
<td>Germany</td>
<td>1 17 2 0 0 0 0</td>
<td>20</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>1970</td>
<td>Denmark</td>
<td>1 1 0 0 0 0 0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>1972</td>
<td>Yugoslavia</td>
<td>1 140 24 0 0 0 0</td>
<td>176</td>
<td>84</td>
<td>18</td>
</tr>
<tr>
<td>34</td>
<td>1973</td>
<td>United Kingdom</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 35 114 239 89 49 40 7 573 277 57

* Infections said to have been transmitted on a carpet.

References

