CHAPTER 3

A REFINED MODEL FOR GONORRHEA DYNAMICS

bed hy a moder fur the
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The popuiation which needs 1o be descr
transmission of gunurrhea congistis of those sexually active peopie who
couid be infected by their contacts. The model in Chapter 2 assunes
that Whis pooulation is homogenesous and unifurm; nowever, that mulel
is tuo simple since the popuiation is really quive heterougeneous. A
snitabie model shonid aiilow fur heterugeneity by incornoratine many
2ToUDa. The division intu groups couid be done accurding to differ-
ences in sex, sexual contact rates, sexual behavior, age, geodaruphic
iocation, Ssocicecounonic status, etc. “or examyie, 3ote individaals
are mure active sexually than others in the sense that they have more
freguent changes of sex npartners. Jome infected people, esvecially

Tr

woren, are egssentially asympivmatic and do not geek aaLment while

others have gymptoms which cause them to seek treatment.

In section 3.1 we deveiovn a model for a popuiation divided Ints n
sroups or subpopuiations. We show that either the disease dies out
naturally for all possible initial levels or +the disease remains
endemic for all future time. Muregver, the numbers of infectivea and
susceptibles in each group approuach nonzero cunstant levels, which are
independent of initial 1evels. The effeets of chanees [n th

[

)

parancler  vaiues (Correspondinﬁ o epldemivicgical changes) on
digease can be determined by examining the resulting changes in the
endemic equiiribrium levelis.

A methed of devermining the contaciy rates among Zroups by using a
propurtionate mixing assumption is described in section 3.2, With

this asgumption the threshoid guantitny which determines whetaer gthe

digseane dies out or remains endemic s an average conlact number.
Yodeis with different groues are considered in subseauent chapters.

5.1 A Gonorrhea Model with n Groups

Assume that the populatvion is divided intu n groups and let M. be
the size of the subpopulation in grouv i. We assume that each grouvo
is kunmogenceous in the sense 1hat ail ndividuslis in the grour are
simliar. They should have the same rates of contact with new sexual
partners, the same mean durations of infection and the same likelihood
gf acauiring infection daring a sexual encounter witn an iaferstious
partner. We asgume that 1individuals are either susceptible or

infectious anl thar infectious individuals in a group have The gane
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sexual behaviour and activity levels as susceptibles. Let I;{(t)
dencte the prevalence in group 1 at time £t so tvhat the susceptible
fraction in group i is 1-I;(t). We measure time t in days.

Tet Aij be the average number of adequate contacts (i.e.,
contacts sufficient for transmission) per unit time (one day) of an
infective in group j with persons in group i. Since the susceptible
fraction in group i is 1~Ii(t), the average number of susgsceptlbles in
group 1 infected per unit time by an infective In group J is Aij(T—
I:(t)) and the average number infected per unit time by N3y
infectives is lJNJIJ(1 I:(%)).

Let d; be the mean duration of infection in days for a person in
group i. As in Chapter 2, we assume that each infective in group 1
has a fixed chance of recovering each day and that the probability is
1/di. Thus the removal rate per day from the infectious class is
NiIiXdi. As noted in section 2.1, that this is eguivalent to assuming
that the durations of infection in group i have a negative exponential
distribution (Hethcote and Tudor, 1980).

The differenvial equations for the model are

d _
FTiMI) = g

e 3

1Aij(NjIj)(1—Ii)) - Nili/di [5.1]

with initial conditions I:(0) for i=1,2,...,n. The first verm

Lio
in each differential equation is the rate of new infections or inci-
dence in group 1 and the second term is the removal rate due to
recovery. Figure 3.1 shows the susceptible and infective compartments

and the transfer rates between compartments.
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Figure 3.1 TFlow diagram for the model [3.1]
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Lajmanoviech and Yorke (1976} proved that the model [3.1] is well
posed. That is, unigue soluvions of [3.1) exist for all time, depend
continuously on the Initial data, and are always between O and 1.
The nxn coefficient matrix A in the linearization of [3.1] is given by
A = L-D where T = [Aiij] and D is a diagonal matrix with W,/d; as the
entry in the ith row and column. Tet s(A) be the stability moduius of
A, 1.e., the maximum real part of the eigenvalues of A. They proved

the following theorem,

THECREM 3.1. Assume that the model 1is 1irredueible, that 1is, the

population cannot be split into two subpopulations that do not contact
each other. The solutions of [3.1] approach the equilibrium point at
the origin if s{A)<0 and they approach a unique poslitive equilibrium
point if s{A)>0, provided +there is some infection in some Bronp
initially.

Thus gonorrhea will die out if the parameter values are such
that s(A)<0 and will approach an endemic steady state if s{(A)>0. One
practical 1implication of the theorem above is that it allows us to
focus on the positive equilibrium point and to see how it changes when
parameter values change or when control procedures are added. Let
F;>0 be the equilibrium prevalence (the fraction of group i that is
infectious a2t equilibrium). Thug the Ei are the solutvionsg of the n
gsimulvaneous quadratic equations obtained when +the right sides of
[3.1] are set equal TO ZETO. From the guadratie equations, the
eguilibrium incidence in group 1 is egual +to the equilibrium
prevalence B; times the group size N
ds:. Figure 3.2 shows the typical behavior of solution paths as they

1
approach an endemic equilibrium point.

divided by the mean duration

One of the striking features of Theorem 3.1 is the qualitative
dynamical conclusion that equations [3.1] have a unigue eguilibriunm
point, either strictly positive or zero, which is the 1limit of every
soiution starting outr from a state where Infection is present. Hirsch
(1984) has shown that this conclusion also holds for a generalization
of equations [3.1]. In his differential equations, the incidence and
removal terms are given by functvions which satisfy cervain
conditions. His moedel is so general that iv is not possible to give a
vrucedure for deciding whether the equilibrium point corresponds to an
endemic steady state or to die out of the disease. However, the
generaiity of hig model strongly suggests that any observed
fluetuatrions in the incidence are not due to the intrinsic dynamics of

the disease so  that they must be due 7©wo fluctuations in



28

10
8t

N

S 6§

S

I

=

S O*R

P
)
0 T~

@) 2 4 (S 8 | O
Infective Fraction |

Figure 3.2. Solution paths approaching the endemic equilibrium point
when s(A) > 0.
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epidemiological or environmental factors or in revorting.

5.2 Proportionate Mixing Among Groups

The c¢ontact rates Aij in the contact matrix can be determined
nethodicaily by using some assumptions regarding the interactions of
the groups. The "proportionate mixing" approach explained in Wolid
(1980) assumes that the number of adequate contacts bevween Hwo Zroups
is proporticonal to the relative gexual activities of the two groups.
An encounter will refer to one or more episodes of sexual intercourse
with a new parwner. For example, if group 1 has 10% of all encounters
and group 2 has 40% of all encounters, then in a proportionate mixing
model, the fraction of all encounters which are between groups 1 and 2
18 18 = A0. The frequency of encounters is a beftter measure of
sexual activity that is 1likely %o ftransmit 1infection than the fre-
guency of sexual intercourse, since encounters are new opportunities

to bhecome infected or to tranemit the infection.

Let a3 be the activity level of group Jj, which 1s +the average
number of encounters of a person in group J per unit time. Thus 1/aj
is the average time between encounters for a person in group j. TLet
oF be the probability that an infective in group ] transmits the
infection during an encounter with a susceptible, i.e., that there is
an adequate contact. Tet m. 13 be the fraction of encounters made by an
average infective of group J with persons in group i. Notice that the
sum of each column in the nmixing matrix M is 1. From these
definitions it follows that the average number of adequate contvacts
per unit time of an infective in group J with different pariners in

oup 1 is A,. = a,m..q. .

i] F iJ7d
The average number of encounters per unit vime is

A = 2 5 I.. The fractional activisty level of group 1 defined by
bi = i /A is a measure of the relative sgexual activity of group 1i.
) n
Notice that ) bi = 1. The proportionate mixing assumption is
i=1

that the encounters of a person are distributed in proportion tvo the
fractional activity levels, i.e., miy = b;.

The contact number kj for group J, which is the number of ade-

quate contacts made by a typical infective in group J during the dura-

tion of infection, satvisfies kj = qjajdj. If 17 is the number of

adeguate contacts with group i of a group J infective during an aver-

age case, then tij = Aijdj = J qu d = mijkj' The n x n matriv T =

[“ij] is called the transmission matrlx. In the proportionate mixing

model, ti5 = bikj"
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The average contact number for this model with proportionate

n
mixing is ¥ = ) biki s which 1s the weighted average of the contact
i=1 '
numbers of tvhe groups with the fractional acvivity levels used ag

weights. It is the average number of persons contacted by an average
infective during the infectious pericd. We now prove that this aver-
age contact number 1s a threshold parameter which determines whether
gonorrhea dies out (E<1) or remains endemic (E>1).

The characteristic equation for the transmission matrix 7T is
det(T=al) = (1) ' (a-R) = 0 . We assume below that T 1is irredu-
cible, which again means that the whole population cannot be split
into two subpopulations which do not interact with each other. The
lemmas below are from Nold {(1980).

LEMMA 3.2, TIf T is a sguare matrix with nonnegative elements, then T
has a real, eimple eigenvaiue p(T), called the Perron eigenvalue,

which is egual to 1ivs spectral radius.

LEMMA 3.3. The outbreak eigenvalue m_ = s(A) for [3.1] nas the same

sign as r{T)-1 where r(T) is the spectral radius of 7.

THEOREM 3.4. TIn the proportionate mixing model the solutions of [3.1)

approach the origin if K<l and they approach a unique positive eguili-
brium if ¥>1, provided there is sone infection in some group

initially.

PROOF. From the characteristic equation and Temma 3.2, the Perraon

eigenvalue p(T) = ¥ is equal to the spectral radius r{(7). By Lemma
3.5y r(T) = K<1 is equivalent to the outbreak eigenvalue satisfying
m_ = s(A}<0 . The theorem now follows from Theorem 3.1.

We now develop some relationships that will be useful in later
chapters. Using several definitions above, an algebraic manipulation
leads to Aiij/Ni = (ki/qidi)qu' so that [3.1] becomes

J
e RS . AU [3.2]
dt o i qidi di ’
tor L = 1@y eewpis This 1s a convenient form since the parameter

values appearing are often available.
The endemic equilibrium prevalences T, are found by setting the
right sides of [3.2] eaual to zero =0 they are the nontrivial

solutions of
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n
Ch.g.B. )k, (1-E, . = B, .
(‘£1 3% J) 1( 1)/q1 i [3.3]
for 1 =1,2,...,n. Define the average equilibrium infectivity h by
n
b= 3 begsTe . .
j£1 75P; [3.4]

The fractional infectivity of group ] defined by

o o= R .
C5 = biayR/h [3.5]

measures the relative ability of group J to transmit the infection.
From [3.3) and [3.4] we find that the endemic equilibrium prevalences

k. must satisfy

T, = hki/(qi+hki) . [%.6]

The equations {%.4] and {3.6] yield

T
i£1qib1ki/(qi+hki) = 4 [5.7]

whieh is equivalent to an nth degree polynomial for h. For example if
n=2, then the quadratic equation is

e B & Lol & g%k = O bbb it e = g (Bl B o B [3.8]
2 L5 by 0 R B Pl Syt 4 3 . ’

The endemic prevalences are found from [3.6] using the positive root h
of [3.8]. |

Since the incidence in group 1 1is N; times the summation terms in
[3.2], the total incidence of the population per year divided by the

population size (i.e., the number of cases per person per year) is

n n
.-r : .
365Li;1Ni(j;1qujﬁj)ki(1—ﬁi)/qidi]
v = -
hy n [3.8]
BT
i=1
Using {%3.3] the number of cases per person per year satisfies
o
365[i£1NiEi/di]
tE = [3.10]
y oM.
i=1 1





