
CHAPTER 5

MODELING GONORRHEA TRANSMISSION IN A HETEROSEXUAL POPULATION

Although sexually transmitted diseases are a major health problem
among homosexuals, there is little transmission between the homosexual
population and the heterosexual population (WHO, 1978 ; Wiesner and
Thompson, 1980) . Here we concentrate on a heterosexual population
subdivided into women and men since the characteristics of gonorrhea
are different for the two sexes . Although the groups of women and men
considered here are highly active sexually, the results are more
general since it was shown in Chapter 4 that changes in prevalence in
the noncore group are directly related to changes in prevalence in the
core group .

Prom the ou.arterly reported incidence of gonorrhea in women and
men shown in figure 5 .1 , it is seen that gonorrhea incidence has a
small but distinct seasonal oscillation . The quarterly incidence
smoothed by using seasonal indices derived from the data is shown in
figure 5 .2 . Notice that the seasonal oscillation is less than 10
percent . Tn This chapter we investigate the implications of the
epidemiological differences between women and men and analyze the
nature of the seasonality .

In the female-male model derived in section 5 .1, a contact number
determines whether the disease dies out or remains endemic . In
section 5 .2 many sources are used to estimate the parameter values and
then the sensitivity off the prevalences and incidences at equilibrium
to changes in parameter values is investigated . Tt is shown that the
prevalences depend primarily on the contact number while the yearly
incidences depend on the contact number and the average durations of
infection . When screening programs are compared in section 5 .3, it is
found that because women have a longer average duration of infection,
screening women is much more efficient than screening men . The
effectiveness of screening women is proportional to the average
duration of infection for women .

Epidemiologists have not understood why the peak incidence of
gonorrhea occurs each year in August to October . Tn section 5 .4 a
model with small oscillations in the contact rates is analyzed mathe-
matically using a perturbation analysis . The observed 6% seasonal
oscillations in incidence in women and 10% oscillations in incidence
in men may be due to reasonably small (5% to 7%) oscillations in the
contact rate .

	

From the analysis of the model, it appears that the



QwF
or0z0

50

(13ldodlld SISVO JO SONVsnOHI
oa

	

00

	

0

	

0
LO

	

C\j

I

	

`i

	

I

	

11

	

1

	

a

	

l

	

L

	

I

	

I

	

I

0961

	

-P

V J~ ~ ~

	

8L61 rd

9L61

-

	

W61

W

	

Q

	

~L61

W
	 OL61

a

G ThOd3d SASd3 JO SGNVSnOH°

9961

9961

	

0

tr961

0

0
•

	

961

~= 0961

	mot 9c61 „;

--)~ 9r,61

0

Q
W

X861

Zc61

0561

9t761

9t,61

4-i
0



00N

OIIHOdld S]S` O JO SONVSnOH°
0
0 D

51

G L OdA6 S~ISVO JO SONVSOOHI

I I W



dI 1 _ 0'2)(1-I

	

T
1

	

2}I
1	1

dt
dT 2
dt

where r -= N 1 /N2 is the ratio of the female to male population sizes .

A flow diagram is given in figure 5 .3 .
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observed peaks in August to October may be due to a peak contact rate
about two months earlier . This prediction that -the peak contact rate
is probably in the summer months agrees with the data and the intui-
tion off epidemiologists .

5 .1 TheFemale-MaleModel

Consider the model 3 .1 with two groups where group 1 consists of
women and group 2 consists of men . Since it is assumed that there is
only heterosexual transmission of gonococcal infection, the contact
rates X 11 and X 22 are zero . Thus this is not a proportionate mixing
model . Indeed, the model is formally the same as a host-vector model
(i-iethcote, 1976) . The differential equations for the model are :

1 /r)(1-I )1 2 infectious
women
I 1

sussceptibie
men

r)(1-I 2 )I 1

	

infectious

s 12 /d 2
men

T 2

Figure 5 .3 Flow diagram for the female-male model .

Let a1 and a2 be the activity levels of women and men, which are

the average daily rates of new encounters by women and men,
respectively . Let q1 be the probability that there is an adequate
contact by an infectious woman during a new encounter and q 2 be the
analogous probability for an infectious man . Using these definitions,
the contact rates are X1 2 - q2 a 2 and X 21 = q1 a 1 .

	

The contact number
k 1 for women, which is the average number of adequate contacts by an

I

her

	

infectious

	

period,

	

satisfies
contact number k 2 for men satisfies
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k2 - A 12 d 2 - g 2a 2 d 2 .

The second generation contact number K = k 1 k2 in the theorem
below determines whether the disease fades out .

	

Since K is the
product of the female contact rate and the male contact rate, it has
the following interpretation : K is the average number of women
(second generation) adequately contacted by men (first generation.) who
were adequately contacted by an average infectious woman during her
infectious period . It also has a symmetric interpretation by
switching the roles of women and men . See I-Iethcote (1974) or
Lajmanovich and Yorke (1976) for a proof of the following threshold
theorem .

THEOREM 5 .1 If K<1, then the solutions I 1 (t) and I2(t) of [5 .1]
approach D as t approaches - (i .e ., fade out case) . If K>1, then for
nositive values of 1, (0) or I 2 (D), the solutions 1 1 (t) and I2(t) of
[5 .1] approach

	

E 1 and E 2 , respectively as t approaches

	

W (i .e .,
endemic case) where the female and male prevalences at the endemic
equilibrium are

h

	

K-1	
J1 = K+(A 21 r)d2 ,
	 K--1	

F2 = K}( X 12jr)d 1 .
[5 .2]

This theorem has an intuitive interpretation . If the average
infectious woman infects less than one other second generation woman
even at low prevalence levels, then gonorrhea dies out . If she
infects more than one, then gonorrhea remains endemic and the
prevalences approach equilibrium levels . Tt can be verified
algebraically that at the endemic equilibrium, the infectee number
KS1 S2 = k 1 k 2 (1 -F 1 ) (1-E2 ) is 1 as predicted in section 1 .5 . The female
cases per woman per year at equilibrium Y 1 is equal to the prevalence
F 1 times the population size `11 divided by the duration d 1 given in
years . The definition of Y2 is analogous .

Since the number of encounters of women must equal the number of
encounters by men, a 1 N1 = a 2 N 2 . This relationship can be used to
reduce the number of parameters appearing in the four coefficients in

L5 .1 )

	

from five (x 12, A 21 , r, d 1 , d2 ) down

	

to
contact effectiveness ratio e to be 0 1 /a 2 . Then

so that

x21 r
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K = (X1?/r)(X21r)d1d2 = (X12/r)2(er)d1d2 = [(X21

	

d d2

and

K(er)

	

112
d 1 d2 - X12/r = K

er) d 1 d 2
1 /2

[5 .3]

Thus the four coefficients in [5 .1] now depend on the four convenient
rarameters d 1 , d 2 , K and er . Since K, e, and r have a more direct
epidemiologic interpretation than X 12 and X 21 , better estimates of
them can be made from available data .

5 .2 Parameter Estimation and Sensitivity Analysis

Since it is not possible to estimate the ratio of the population
sizes N1 and N2 of the women and men at risk, we simply assume that r
= N1 M2 --I's 1 . As described in section 1 .2 the probability of
transmission of gonococcal infection during one sexual intercourse by
an infectious woman is about 0 .2 to 0 .3 while the corresponding proba-
bili.ty of transmission by an infectious man is 0 .5 to 0 .7 (Wiesner and
Thompson, 1980 ; - Rein, 1977) . Thus the probability of transmission in
n sexual intercourses increases as n increases and can be estimated to
be 1-(0 .75) n for an infectious woman and 1-(0 .4) n for an infectious
man though in fact the n events are not truly independent . if
encounters consisted of exactly one, two or three sexual intercourses,
then the contact effectiveness ratio e = q. 1 /q2 would be a.pproxi.mately
0 .42, 0.52, 0 .62, respectively . Since some encounters involve only
one sexuall intercourse and some involve several, the value used for er
is 0 .5 .

The average durations of infection can be calculated as a

weighted average of the average durations of symptomatics and
asymptomati.cs . Estimates of periods of infection are 3-45 days for
symptomatic women, 3-12 months for asymptomatic women, 3-30 days for
symptomatic men and 3-6 months for asymptomatic men . Moreover,
approximately 60% of cases in women are a symptomatic and 10% of cases
in men are asymptomatic (Wiesner and Thompson, 1980 ;' Kramer and
Reynolds, 1981) . Realistically, there is no way to obtain highly
reliable estimates of these values . Using average durations of
infection of 8 days for symptomatic women and 128 days for
asymptomatic women, the weighted average duration for women is 80
days . Using an average duration of 8 days for symptomatic men and 128
for asymptomatic men, the weighted average duration for men is 20
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days .
The contact number T is greater than 1 since gonorrhea is

endemic . Ts cannot be close to 1 since small changes in sexual
behavior or in health care delivery would then cause large changes in
incidence and large changes have not been observed (Yorke, Hethcote
and Nold, 1978) . Here the contact number K is taken to be 1 .4 as in
section 2 .5 .

The ratios off reported female cases to reported male cases in the
United States for the calender years from 1964 through 1980 were : .33,

. 33 , -32, . 33 , . 33 , -35, -37, .42 1 -52, . 65 , . 68 , . 68 , .68 , . 68 , .70 P

.70, and .69 (Blount, 1979) . The increase in this ratio in the early
seventies is obvious and coincides with the increase in nationwide
screening and with the awareness of the importance of finding infected
woman . Epidemiologists believe that the increase is due to the
increased searching out and identification of i nfecti.v e women by the
screening program . Studies involving contact investigation have been
used to estimate the ratio of actual female to actual male cases, but
the estimates are not consistent so that the ratio of actual
incidences is unknown (Rein, 1977) . Consequently, for a model to be
satisfactory, we require the ratio (using equilibrium values) to lie
between 0 .6 and 1 .0 . The current ratio of reported cases is 0 .69 . Tn
fact this ratio may vary from population to population . Our best
estimate of the parameters of the model is parameter set number 1 in
Table 5 .1 . The uncertainty in this "baseline" parameter set requires
the examination off the other sets in that table .

The sensitivity of the prevalences and yearly incidences in the
model in section 5 .1 to changes in parameter values is now investi-
gated . Table 5 .1 shows the prevalences and incidences for the
baseline parameter set (number 1) and for modified parameter sets . At
the endemic equilibrium for the baseline parameter set 1 , 22% of the
women and 8 .4% of the men have gonorrhea at a given time so that the
susceptible fractions are .78 for women and .916 for men . For the
baseline parameter set 1 the contact numbers are k 1 = 1 .67 for women
and k2 = 0 .84 for men . The average number of transmissions at the
endemic equilibrium by an infectious woman is 1 .53 and by an infec-
tious man is .65 so that the infectee number is 1 . For the baseline
parameter set 1 the prevalence in women is above 0 .20 but the preva-
lence in men is not so that according to the criterion in section 4 .1,
the women form the core group in this model . For the baseline
parameter set 1 the yearly incidence in women is 0 .65 times the yearly
incidence in men which is consistent with the ratio 0 .69 of reported



incidences .
From parameter sets 1-7 we see that the prevalences E1 and F2

depend primarily on the contact number K and only slightly on d1, d 2
and er . On the other hand, the yearly incidences are strongly
dependent on the durations . Doubling both durations d 1 and d 2 as in
parameter set 2 does not change the prevalences, but it does halve the
yearly incidences . At first glance it may seem strange that the
prevalences are not changed . This is because the contact number
remains unchanged . In effect, increasing the duration automatically
decreases the number of contacts per day for both men and women . As
seen i.n parameter set 7, the vai.ue of the parameter er influences the
distribution of the prevalence between women and men . Some of the
qualitative observations above can be deduced from equation [5 .2] and
[5 .3] and hold for all parameter values .

Although the estimates in this section of the parameters are
subject to uncertainty and the model in section 5 .1 involves
simplifications, the model and baseline parameter set 1 are accurate
enough to obtain comparisons and estimates in subsequent sections .

TABLE 5 .1

'Equilibrium Prevalences and Yearly Incidences
for Various Parameter Sets

56

Parameter set 2 3 4 6

Duration d1 89 160 160 80 80 80 80
Duration d2 20 40 20 40 20 20 20
Contact number K 1 .4 1 .4 1 .4 1 .4 2 . 1 .2 1 .4
Parameter er .5 .5 .5 .5 .5 .5 1 .

.021 .010 .015 .015 .025 .019 .030

.042 .021 .030 .030 .050 .039 .030

Equilibrium
Prevq-1ence F1 .220 .220 .236 .201 .400 .126 .201
Prevalence E 2 .084 .084 .065 .106 .167 .047 .106
Y1=,yearly I -X4 .502 .538 .916 1 .825 .575 .916
cases per woman
Y2=yearly 1 .538 .769 1 .190 .969 3 .042 .849 1 .938
cases per man



5 .3 Screening Women and Men

We consider the effect of screening as a gonorrhea control
procedure by modifying the female-male model In section 5 .1 to include
screening . Let C1 and C2 be the fraction of the women and men that
are screened for gonorrhea per day . Assume that the screened fraction
is a random samnie so that its mixture of susceptibles and i.nfectives
is typical of the ropuiations being considered . 'Thus we assume that
the fractions CuI1 and C2 T2 are treated and removed per day from the
respective infective classes .

When the differential equation model [5 .11 is modified to include
screening, it becomes

dt1
f

	

r
12

)(1-1 1 )12 - d1 - C 1 I 11
[5 .41

d 2 = (~21 r}(1-I2)I1 - d . 2 - C 2 I 22

A flow diagram is given in figure 5 .4 .

susceptible
women

susceptible
men T 2
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i /r)(1-I )I 2

r)(1-I )I 1

C 2 T 2

Infectious women
T 1

infectious men
1 2

Figure 5 .4 . Flow diagram for the female-male model with screening .

Thus the net effect of screening is to decrease the average
duration

	

of infection and,

	

consequently,

	

the contact number .
If ds and d3 denote the average female and male durations in the
presence of screening, then

1 /d + C 1-1

Screening women i.s much more effective in reducing average
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duration than screening men at the same rate because the average
duration offinfection is longer for women . For example, assume that
25% of the women and men are screened per year so that C 1 = C 2
.25/365 .

	

If d 1 = 80 days and d2 = 20 days, then dT = 75 .8 which -is a
5 .2% decrease and d9 = 19 .73 which. i s a 1 .4% decrease . Tn this case
the percentage decrease in average duration is about 4 times greater
for women than for men . The average duration of women is larger than
for men since more women are asymptomatic .

	

Indeed, the nationall
screening program in the United States screens only women in an
attempt to identify asymptomatic women .

	

Tn the remainder of this
section we will only consider screening of women .

Table 5 .2 shows some calculated values of prevalences at
equilibrium and yearly incidences for various yearly screened
fractions 365 ,'1 of women . Parameter sets 1 and 3 from Table 5 .1 were
used as baseline parameter sets in computing the percentage changes .
For parameter set 2 in ?'able 5 .2 interception and cure of 5 .5% of the
female infectives i.n each 80 day period (the average
women) shortens the average duration in women by 5 .2%

duration in
so that the

prevalence in women is reduced by 14 .8% and the prevalence in men is
reduced by 13 .7% . Since both the prevalence and durations are
decreased in women, the female cases per woman per year is reduced by
only 10 .2% . Since the average duration in men is unchanged, the male
case per man per year i.s reduced by 13 .7% . In parameter set 5,
screening women an average of 2 times per year causes gonorrhea to die
out . It i.s clear in Table 5 .2 that screening a given fraction of
women is more effective in reducing prevalences and incidences when
the original average duration for women is 160 days than when it is 80
days .

As described in section 5 .2 the ratio of female to male reported
cases increased from .33 to about .69 when the screening program was
started . We now investigate possible causes of this increase .

It is estimated that 7 out of the 8 million culture tests each
year are screening tests and the balance are diagnostic tests (Yorke,
Tlethcote, and Nold, 1978) . The number of women in the United States
between ages 19 and 29 is about 28 million so that the female
population at risk is probably less than 28 million . It could be
something like 7 million or 14 million . Thus the fraction of the
female population at risk screened each year might be about 25% or 50%
or 100% . In the calculations for parameter sets 1-4 in Table 5 .2, the
ratio of Y 1 to Y 2 increases from 0 .65 with no screening to 0 .68 with
25% screening to 0 .71

	

with 50% screening to 0 .76 with 100%
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screening . These calculations suggest that a screening program for

women could cause a slight increase in the ratio of incidences in
women to men, but could not cause this ratio to double . Hence, the
explanation of the observed doubling of this ratio is probably that
given by most epidemiologists ; namely, that the doubling of the ratio
of i ncidences. i n women to men is due to increased case finding in
women .

T A BL's 5 . 2

Hqui.li.brium Prevalences and Yearly Incidences for Various
Yearly Screened Fractions 3650 1 of Women .

5 .4 Seasonal Oscillations in Gonorrhea Incidence

The reported incidence of gonorrhea in the United States has
oscillated seasonally ever since data collection was started in 1919
(Cornelius, 1971 ;" Jones, 1978) . Seasonality of reported incidence has
also been observed in Austria, Sweden and. -Bulgaria (Rein, 1977) . The
maximum incidence in the United States, which has always occurred in
August to October, is at least 20% higher than the minimum incidence,
which has always occurred in February to May (Wiesner and Thompson,
1980) . Cornelius (1971) used quarterly data from 1950 through 1968 to
calculate seasonal indices for gonorrhea incidence . The seasonality
of reported incidence using quarterly data from 1946 to 1977 is shown
_n figure 5 .1 .

	

The smoothness of the quarterly incidence data

Parameter set
== 3 4 6

8

duration d 1 80 80 80 80 80 160 160 160
duration d2 20 20 20 20 20 20 20 20
contact number K 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1,4
parameter er .5 .5 .5 .5 .5 .5 .5 .5

0 .25MMM 0ƒƒ

preva.-I ence F1 .220 .187 .156 .095 0 .236 .168 .103
prevalence E2 .034 .073 .061 .038 0 .065 .047 .029
Y1 =,yearly
cases per woman

1 .004 .902 .780 .527 0 .538 .425 .286

Y2=yearly
cases per man

1 .538 1 .327 1 .117 .695 0 1 .190 .864 .538

change ,n Y1 -10 .2% -21 .4% -47 .5% -100% 0 -21 .0% -46 .8%
change in Y2 -13 .7% -27 .4% -54 . • -100% 0 -27 .4% -54
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corrected by seasonal indices in figure 5 .2 shows the regularity of
the seasonal variation of gonorrhea incidence . The median of the
weekly reported cases for 1966-1980 are shown in figure 5 .5 . Even
though the median is very erratic the low point seems to be in the
wini,er or spring and the peak is between August and October .

The reason for the seasonaiity of reported gonorrhea i.s
unknown . Tt does not seem to be due to variations in reporting
(Cornelius, 1971 ;' Rein, 1977) . Legitimate and illegitimate concep-
tions show the opposite seasonal pattern as gonorrhea . Although
syphilis incidence does not seem to vary seasonally, incidence of
nonspecific urethritis has the same seasonal pattern as gonorrhea
(Rein, 1977) . Similar seasonal case patterns have been observed for
both sexes, for public and private cases, for large and small cities,
for rurall areas, and for cities with temperate and severe winters
(Corneli.us, 1971) . The seasonality could reflect seasonality in sus-
cepti.bility to gonorrhea or in the virulence of the gonococcus or
increased use of antibiotics in winter months (Wiesner and Thompson,
1980) . W . W . Darrow at the Centers for Disease Control predicted that
the peak contact rate for gonorrhea should occur in the summer when
students and other people often move and change sex partners . Why the
peak incidence of gonorrhea occurs in August to October has baffled
epidemiologists . This late peak is explainable by this model .

.A perturbation analysis is now used to determine an approximate
solution for a small oscillation in the contact rates . Some readers
may wish to skip the detailed mathematical analysis and go directly to
the conclusions at the end of the section . Note that Aronsson and
Meliander (1980) showed that if the general model [3 .1] is modified so
that the contact rates and removal rates are periodic, then above the
threshold there is a uni.aue nontrivial periodic solution, which is
globally asymptotically stable . Our analysis below yields estimates
and further information regarding; the unique periodic solution of the
female-male model .

Seasonality is introduced into the model [5 .1] by assuming that
the contact rates vary seasonally so that X 12 and X21 are both
multi.pled by 1 + c sin wt where e is the relative amplitude of the
perturbation and the frequency w corresponds to a period off one
year . The model [5 .1] becomes

dI1 =
( X r 2 )(1 + e sin wt)(1-I 1 )I 2 - I

1
dt

d1 2
dt (X 2 T- ) (1

d 1

+ e sin wt)(1-T 2 )I

	

I2
1 -

2

[5 .5]



MEDIAN OF WEEKLY REPORTED CASES OF GONORRHEA
FROM 1976 TO 1980 IN THE UNITED STATES

25

13

	

17 21

6 1

25 29
WEEK

33 37 41 45 49

Figure 5 .5 . Median of weekly reported cases of gonorrhea from 1976 to
1980 in the United States .
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The dimensionless and scaled form of this model is

di 1
dT

	

= u(1 + e sin ~T)(1-I1 )I2 - I 1

dI
dT2

	

~v(1 + E si.n

	

T}(1 - T2 )T1 - ~I 2

du
dT

,IV
CT

V

T

_ -( o/R)U + Hl - uuv + u E sin ~T [Rlu-U)[F2 +v ]

(c/R)U - cvRV - ~ vTJV + ~ vE sin 1 T [1 /vR-V ][E 1 +t7]

[5 .6]

where the di.mensionless time is T = t/d 1 and the dimensionless para-
meters are u = X12d1 /r, ~ = wd 1 , v = A 21 d 2 r and ~ = d 1 /d2 .

When the equilibrium point [5 .21 is translated to the origin
letting 1, = E1 + U and 12 = E2 + V, the model [5 .6] becomes

[5 .7]

where F 1 - (uv-1)/v(1+j,), E 2 - (uv-1)/u(1+v) and R = E 1 /} 2 . Vote
that uv > I since K > 1 . It is reasonable to expect that the small
periodic forcing in system [5 .7] leads to a small periodic sclution
around the equilibrium point . In fact we show that there is a unique
periodic solution which -is uniformly asymptotically stable and then we
analyze the asymptotic behavior o_ff the first two terms in the power
series expansion in e .

System [5 .7] is of the form x' = f(T,x,E) where x is a vector
function of dimension 2 and f is periodic in c with period 2Tr/ .

The system [5 .7] with e = 0 has no nonzero 2Tr/ periodic solution . Sy
a theorem based on the implicit function theorem (Miller and Michel,
1982, p . 313), for sufficiently small c , system [5 .7] has a unique
solution ~(T,E) which

	

is 2rr/i periodic

	

and

	

continuous,

	

and such
that ~(T,0) is the trivial solution . Since the characteristic roots
of the linear ization of [5 .7] with e = 0 are negative real numbers,
the solution c(T,E) is uniformly asymptotically stable .

The preceding paragraph shows that a regular perturbation
analysis for small E can be used and that there is no danger of para-
metric resonance or secular terms . In contrast, Dietz (1976) showed
numerically that in a measles model with a spiral equilibrium point,
seasonal oscillations in the contact rate lead to biennial oscilla-
tions in incidence because of subharmoni .c resonance .
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We expand an arbitrary solution in powers of e -pith the form

U(T,E) =

	

+ E U 1 (T) + E2 U 2 (T)

V (T,E) _ V 0 (T) + E V 1 (T) + E2
V 2 (T)

The terms U 0 (T) and V a (T) satisfy [5 .7] with e
bounded .

	

Since the eigenvalues of the lineari .zation of [5 .71 with
E = 0 are negative real numbers, U 0 (t) and Vo(t) approach the origin
exponentially (Miller and Michel, 1982, p . 261) .

A straight-forward calculation shows that U 1 (T) and V 1 (T) satisfy

d.J i
dT -

-( u/R)U1 +R+T 1 - p(U oV 1 +V o U1 ) + u sin ~T [R/P-U ,) ]

	

+V o ]

dV 1
dT = (~/ R)U1 - vRV 1 - ~v(U oV 1 +V o U1

The matrix form of [5 .9] is

x'(T) _ [ A + 13(T)]x + f(T) + g(T)

where

T3( -0 =

TU 1

-uV o

	

-PU0

-cvV
0

	

-~uU 0

A

(RV o - PE 2U o - PU V o) si.n 1)T

(U o /R - vE 1 V o - ))uoV o) ~ sin t)T

Since F(T) and g(T) in [5 .103 approach zero as T approaches
infinity and the solution of the homogeneous equation is zero, the
solution of [5 .101 for large time should be determined primarily by
f(T) .

+ ~v sin

F 1 sin

;F 2 si.n

[ 5 .8]

0 so that they are

[5 .9]

~T[ ifs

	

F1 +U o ]

vR

1Jl T

a



functions on

	

[0,-)
00

and f g(s) ds < -

g(t) 0approach u(t) = f eA(t-s) f(s)ds
0

-PROOF . Let y(t) = x(t) - u(t) . Then

r

f( )

y'(t)

	

_

	

[A + B(t)]y + h(t)

where h(t) = B(t)u(t) + g(t) .

	

Since u(t) is bounded, the
Co

integral of B(t) implies f h(t) < - . To prove the theorem we need
0

only show that all solutions y(t) of (P) tend to 0 as t + ~ . This
will follow from Strauss and Yorke (1968), Theorem A part ii, in three
steps .

First we view the linear system

w' (t) = Aw(t) + B(t)w(t)

as a perturbed form of x 1 (t) = Ax(t) .

	

Since 0 is (uniform)
asymptotically stable, we may apply Theorem A part ii and conclude 0
is "eventually uniform asymptotically stable" (FvUAS) for (L) .
refer the reader to the source for a detailed definition, but all
solutions w(t) of (L) tend to 0 as t +

Next we view (P) as
Theorem A part ii to conclude 0 is FvUAS for (P) . This implies that
(P) has some solution y i satisfying y 1 (t) + 0 as t + - .

Finally let y2(t) be any other solution of (P) .
y2(t) - y1 (t) satisfies (T,) and
y 1 (t) + 0, we have y2 (t) + 0 as t +

All of the assumptions in
the A,B(T), .f(T) and g(T)
and approach the origin

the forcing term f(T) can be found by converting the
As T + - we

corresponding to
system [5 .9] to a second order differential equation .
obtain

x(T)-b- f T e A(T-s) f(s)ds --b

0
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THEOREM 5 .2 If all eigenvalues of the real constant matrix A have
real parts less than -a which is less than 0, B(t) is a, real
continuous matrix on [0,-)

	

, f(t) and g(t) are real continuous vector

is bounded on [0,00) ,

then solutions of x'(t) _ [A +

as t approaches

IX

00

L oC1 coso + 0 2
C 3 cos~T + C4 sin

f

	

F(s) ds < 0 ,

0
B(t)1X + f(t) +

(f)

fi.n .te

(L)

We

a perturbed form of (t) and again apply

Then w(t)
so tends to 0 as t + - . Since
00 . The proof is complete .
Theorem 5 .1

	

are satisfied by
i.n [5-101 since U o (T) and V

o
(T) are bounded

exponentially .

	

The particular solution

[5 .11 ]



where

D

DC
1

DC 2

DC4

2
= [c(uv-1) - ~2]

	

+

	

(u/R + ~ v

_ -~[ ~ + (cxR) 2 + ~(,J/R

_ [(i + VR) ( C2 )( PV -- 1) + (u/R - ~ ) ~ 2 1 E 1

DC 3 = - C ~[ C + (u/R) 2 + (u/R + ~ vp)

_ ~[(uIR + 1)~(uu - 1

Thus if the relative seasonal change
then solutions of [5 .71

[5 .111 for large time .
equilibrium point (11 ,F 2 )
for large time .

We are interested i.n the size of the oscillations in the
prevalences in women and men and in the relationships between the time

(c2 + ('14 ) 1 /2

E 2

c in the
approach e times the periodic solution in
Solutions (I 1 ,1 2 ) of [5 .51 approach the

times the periodic solutionplus E
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+ cvR)

+ ( ~,jR - 1) ~2 )E 2

when the peak contact rate occurs and

inf.ective fractions occur .

	

Now U 1 (t) has

and a minimum of --(C2 + C2 )1/2

	

at times
maximum f.racti.onal change in the prevalence

2 112C

	

+ C 2 )

	

-

	

E(w2
+	 X2(1+))R)2) 112

1

2 2

contact rates is small,

in [5 .111

the times when the peak

a maximum of (C 2 + C
2

)i /2

T, = arctan (C 2 /C 1 ) /w .

	

The
in women is

[5 .121

The results for men are analogous with the maximum fractional change
given by

E P (w2	+ (1 D +	 u/R)2 ) 1/2

	

[5 .131

Table 5 .3 shows the calculation results for the same sets of
parameter values as in Table 5 .1 . The maximum fractional changes are
given by [5 .121 and [5 .131 . The phase shifts are the number of days
that peak prevalence lags behind the peak contact rate . For example,
using parameter set 1 a 1% oscillation in the contact rate causes a
1 .09% oscillation in the prevalence for women and a 1 .37% oscillation
i.n the prevalence for men . The peak prevalence for men occurs 62 days



PHASE PLANE PORTRAIT OF PERIODIC SOLUTIONS
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Figure 5 .6 . Approximate periodic solutions when the contact rate
varies seasonally . For a given e and parameter set 1,
solutions of (5 .5) approach these periodic solutions .
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after the peak in the contact rates and the peak prevalence for women
occurs another 22 days later . The pattern is similar for the other
parameter sets .

Using parameter set 7, the approximate periodic solution of [5 .5]
found from [5 .8] and [5 .11] i.s

T (t) _ .220 + c(- .238 cos wt + .030 sin wt)
[5 .14]

T 2 (t) m .084 + e(- .101 cos wt + .056 sin wt) .

Figure 5 .6 shows approximate periodic solutions around the equilibrium
point for small values of e . The global asymptotic stability
mentioned earlier means that for a given e, all solutions of [5 .5]
starting with nonzero initial prevalences approach a periodic solution
which is closely approximated by the periodic solutions given by
[5 .14] and shown in figure 5 .6 .

TABLE 5 .3

Amplitude and phase shifts of the forced oscillations
for various parameter sets .

The maximum fractional change in reported incidences is the
difference between the maximum and minimum incidences divided by the
sum of the maximum and minimum incidences . Seasonal indices (0 .942,
0 .968, 1 .098, 0 .989) for all reported cases are given -i.n figure 5 .2 .
Using the seasonal indices for women and men for the years 1964 to
1975 the maximum fractional change in reported incidences are (1 .064 -
-955)/(1 .064 + .954) _ .054 for women and (1 .107 - . 923)/(1 .107 +

parameter set 6 7
duration d 1 F30 160 80 80
duration d2 20 20 20
contact number K 1 .4 1 .4 1 .2 1 .4
parameter er .5 .5 .5 1 .0

ƒ
.01 .01 .01 .01

oscillation women 1 .09% 0 .53% 0 .61% 0 .90% 0 .97% 1 .12% 1 .09%
amplitude

	

men 1 .5(% 0 .86% 1 .04% 1 .07% 1 .31% 1 .37% 1 .34%
phase

	

women 84 94 91 86 6 7 90 84
shift

	

men
(days)

62 62 50 72 50 67 62
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.92'3) = .091 for men . These estimates are crude since they are based
on quarterly data . The actual oscillations in incidence are probably
around 6% in women and 10% in men . Tt is not possible to estimate the
actual phase shifts ; - however, the quarterly data shows that the peak
incidence in women probably occurs about 2 to 3 weeks after the peak
incidence in men .

Using parameter set 1 in Table 5 .3 it seems that the actual
seasonal oscillations i.n incidence would be caused by a 5% to 7%
seasonal. oscillation in the contact rate ~e = .05 to .07) .
Moreover, the actual phase shifts may be about 9 weeks for men and 12
weeks for women . Thus the model suggests that the observed peaks in
gonorrhea incidence which occur in August to October are
to peak contact rates in June or July .

Thus the first important conclusion is that the observed seasonal
osci.t .iations in incidence may be due to reasonably small (5% to 7%)
oscillations in the contact rate . The second conclusion is that the
observed peak incidences in August To October may be due to a peak
contact rate in the summer months . These results were surprising to
the epidemiologists in the VD Control Division of the Center for
Disease Control when we first announced them .

probably due




