
CHAPTER 3

A REFINED MODEL FOR GONORRHEA DYNAMICS

he non~.t_at _on wh_c,'n needs to be described b

	

a T..odei for the
t.ransmnission of gonorrhea consists of those _sexually active people who
could he infected by their cant acts .

	

The model in

	

Chapter 2 assumes
that th is r nu at i ~n is i gen? ius and an i four ; however, t''1 At
is too limp Le since the population is really quite heterogeneous .

	

A
., ..ita'ble model should allow for heterogeneity b incornoratinr marks
fgrouns . The division into groi .ps could be done accord ingg to differ-

,-ences in sex, sexual contact rates, sexual behavior, age, geagriphic
locat ion, so ioecon m status, etc . :nor exa 1~1P, so Tel n' .'I duais
are more active sexually than others in the sense that they have more
f.reesent changes of sex partners .

	

Come infected people, esneeial.l : ~
men, 3.re ess ent _

	

~y a :3.V'nptomat is -end do not seek trey ment ,,hi~
others have ,: ymptoms wh ieh cause them to seek treatment .

?nn sec r, ion. 7 . 1 we deveion e mo? e,' for a roorulat ion d `_v ided into n
grow s or silbpopu -i ns . We show that either the disease dies out
naturally for all possible initial levels or the disease remains
endemic for all future time . "•' oreover, the numbers, o` irfecTfiver and
suscept .ibles in each group approach nonzero constant Level,,.-,, which are
independent 1° initial ieve i s . he effects of changes in the
par arieter values (corres pond in sr o ep.idem _'Log ical changes) on a
disease can be determined by examining -The result i.ng changes in the

endemic eau i ibriur: level,- .
A method of determining the contact rate, among, groups by using a

proportionate mixing assumption is described in section 3 .2 . With
this ssum t ion the threshold q ,,.ant i7 y wh Lch determines whether The

disease dies Out ur remains endemic is an average contact number .
"od 'in 'sits different grours are considered in subsenuent charterss .

3 .1 A Gonorrhea Model with n Groups

t
Assume that the population is divided into groups end let i be

he s ize of the suhpopulu .t ion iri group i . We assume that each ,~roun
s honioc:en o ._1 ; in the sense that ale _nI iv idua,n the gro'.1C, are

similar . They should have the rates ofcontaa.ct with new ,sexual
partners, the same mean dt.rations; of infect ion and the same likelihood
1) . ace'.i firing Lri .-ect ion Cl 1r .ing a sexual encounter w itn an Infect, ious
partner . We assume that find ividua .f_s are either susceptible or
infer?.ions and that, infectious individua -ls in a

	

rasp have the . ame
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sexual behaviour and activity levels as
denote the prevalence in group i at time
fraction in group i is 1--I i (t) . We measure

Let a i j be the average number of
contacts sufficient for transmission) per
infective in group j with persons in group i . Since the susceptible
fraction In group i is 1--I i(t) , the average number of suscentibies in
group i infected per unit time by an infective in group j is a ij (1-
I i (t)) and -the average number infected per unit time by N j t
infectives is aij .NiTj(1-Ti(t)) .

Let d i be the mean duration of infection in days for a person in
group i . As in Chapter 2, we assume that each infective in group i
has a fixed chance of recovering each day and that the probability is
1/d i . Thus the removal rate per day from the infectious class is
rl i T i /d i . As noted in section 2 .1, that this is equivalent to assuming
that the durations of infection in group i have a negative exponential
distribution (Fethcote and Tudor, 1980) .

The differential equations for the model are

d (N

	

N . I . /d,dt i

	

j=1

with initial conditions I i (O) = I io for i=1 ,2, . . .,n . The first term
in each differential equation is the rate of new infections or inci-
dence in group 1 and the second term is the removal rate due to
recovery . Figure 3 .1 shows the susceptible and infecttive compartments
and the transfer rates between compartments .

group n
susceptibles NnI n /

n
I

1
Xnj N j T j )(1 -T n }

Figure 3 .1 Flow diagram for the model [3 .1]

susceptibies . Let I 1 (t)
t so that the susceptible
time t in days .
adequate contacts

	

(i .e .,
unit time (one day) of an

[in I n
group n
infectives

group 1
susceptibles

(~ a j N j I i )(1-I 1 )_1 N 1 I 1
group 1
infectives



27
Lajmanovich and Yorke (1976) proved that the model [3 .1] is we -,-'

nosed . That is, unique solutions of [3 .1] exist for all time, depend
continuously on the initial data, and are always between -0 and 1 .
The n.xn coefficient matrix A in the linearization of [3-11 is given by
A = L-D where L = [ a i jid j ] and D is a diagonal matrix with Ni,/d, as the
entry in the ith row and column . Let s(A) be the stability modulu .s of
A, i .e ., the maximum real part of the eigenvalues of A . They proved
the following theorem .

THE01RHM 3 .1 . Assume that the model is irreducible, that is, the
population cannot be split into two subpopulat ions that do not contact
each other . The solutions of [3 .1 ] approach the eauii ibr ium point at
the origin if s(A)40 and they approach a unique positive equilibrium
point if s(A)>O, provided there is some infection in some group
initially .

Thus gonorrhea will die out if the parameter values are such
that s(A)<0 and will approach an endemic steady state if s(A)>O . One
practical implication of the theorem above is that it allows us to
focus on the positive equilibrium point and to see how it changes when
parameter values change or when control procedures are added . Let
P i >0 be the equilibrium prevalence (the fraction of group i that is
infectious at equilibrium) . Thus the E i are the solutions of the n
simultaneous quadratic equations obtained when the right sides of
[3 .1] are set equal to zero . From the quadratic equations, the
equilibrium incidence in group i is equal to the equilibrium
prevalence E i times the group size ii i divided by the mean duration
d i . Figure 3 .2 shows the typical behavior of solution paths as they
approach an endemic equilibrium point .

One of the striking features of Theorem 3 .1 is the qualitative
dynamical conclusion that equations [3 .11 have a unique equilibriu-n
point, either strictly positive or zero, which is the limit of every
solution starting out from a state where infection is present . Hirsch
(1984) has shown that this conclusion also holds for a generalization
of equations [3 .11 . In his differential equations, the incidence and
removal terms are given by functions which satisfy certain
conditions . His model is so general that it is not possible to give a
procedure for deciding whether the equilibrium point corresponds to an
endemic steady state or to die out of the disease .

	

However, the
generality of
fluctuations in the incidence are not due to the intrinsic dynamics of
the

	

disease

his model strongly suggests that any observed

so that they must be due to fluctuations in
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Figure 3 .2 . Solution paths approaching the endemic equilibrium

when s(A) > 0 .
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epidemiolog .ica or environmental factors or in reporting .

3 .2 Proportionate Mixing Among Groups

The contact rates A i j in the contact matrix can be determined
methodically by using some assumptions regarding the interactions of
the groups . The "proport;ionate mixing" approach explained in Nold
(1980) assumes that the number of adequate contacts between two groups
is proportional to the relative sexual activities of the two groups .
An encounter will refer to one or more episodes of sexual intercourse
with a new partner . For example, if group 1 has 10% of all encounters

and group 2 has 40% of all encounters, then in a proportionate mixing
model, the fraction of all encounters which are between groups 1 and 2
is .10 x .40 . The frequency of encounters is a better measure of
sexual activity that is likely to transmit infection than the fre-
quency of sexual intercourse, since encounters are new
to become infected or to transmit the infection .

Let aj be the activity level of group j,
number
is the

q j be

of encounters of a person in group j per

average time between encounters for a person
the probability that an infective in group

infection during an encounter with a susceptible,

opportunities

which is the average
unit time . Thus 1/al

group j . Let
transmits the
that there is

in

j
i .e .,

an adequate contact . Let m ij be the fraction of encounters made by an
average infective of group j with persons in group i . Notice that the
sum of each column in the mixing matrix M is 1 . From these
definitions it follows that the average number of adequate contacts
per unit time of an infective in group j with different partners in
group i is a

	

= am j q
jij

	

j i
The average number of encounters per unit time is
n

A =

		

a .N

	

The fractional activity level of group i defined by
i=1

b i = a i N i /A is a measure of the relative sexual activity of group i .
n

Notice that

		

b i = 1 .

	

The

	

proportionate mixing assumption is
i=l

that the encounters of a person are distributed in proportion to the
fractional activity levels, i .e ., m ij = b i .

The contact number k j for group j, which is the number of ade-
quate contacts made by a typical infective in group j during the dura-
tion of infection, satisfies k j - g j a j d j . If tij is the number of
adequate contacts with group i of a group j infect ive during an aver-
age case, then t ij a ij d j - aim. g j d j -- m ijk j . The n x n matrix T W

[t ij ] is called the transmission matrix . In the proportionate mixing
model,

	

= bikj •



brium if W>1, provided there
initially .

dI .

	

n

	

k .(1-I)
dt t - ( I1 b j g j l j )

	

lq . d .
	 i

j=

	

I

i s
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The average contact number for this model with proportionate
n

mixing is K =

		

b i k i , which is the weighted average of the contact
i=1

numbers of the groups with the fractional activity levels used as
weights . It is the average number of persons contacted by an average
infective during the infectious period . We now prove that this aver-
age contact number is a threshold parameter which determines whether
gonorrhea dies out (741) or remains endemic (K>1) .

The characteristic equation for the transmission matrix T is
n n-1det(T-aI) _ (-1) a

	

(a-K) = 0 .

	

We assume below that T is

cible,

	

irredu-
icble, which again means that the whole population cannot be split

into two subpopulations which do not interact with each other . The
lemmas below are from Nold (1980) .

LEMMA 3 .2 . If T is a square matrix with nonnegative elements, then T
has a real, simple eigenvalue p(T), called the Perron eigenvalue,
which is equall to its spectral radius .

LEMMA 3 .3 .

	

The outbreak eigenvalue m o = s(A) for [3 .1] has the same
sign as r(T)-1 where r(T) is the spectral radius of T .

THEOREM 3 .4 . In the proportionate mixing model the solutions of [3 .1]
approach the origin if 7<1 and they approach a unique positive equili--

PROOF . From the characteristic equation and Temma 3 .2, the Perron
eigenvalue p(T) = K is equal to the spectral radius r(T) . By Lemma
3 .3, r(T) = K<1 is equivalent to the outbreak eigenvalue satisfying
m V = s(A)<0 . The theorem now follows from Theorem 3 .1 .1

We now develop some relationships that will be useful in -Later
chapters . Using several definitions above, an algebraic manipulation
leads to a ij N ./N i = (k i /g i d i )b j g j so that [3 .11 becomes

for i = 1,2, . . .,n .

	

This is a convenient
values appearing are often available .

The endemic equilibrium trevalences
right sides of [3 .2] equal to
solutions of

some infection in some group

I i

[3 .21

form since the parameter

are found by setting the
zero so they are the nontrivial



E i

Y =
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h j g j E j )kqi = E :i

	

[3 .3]

for i = 1 ,2, . . . ,n .

	

Define the _average_ equilibrium infectivity_ h by

n
h = j ~ 1 b j gj h j .

	

[3 .4]

The fractional infectivity of group j defined by

= bjgjFj/h

	

[3 .5]

measures the relative ability of group j to transmit the inf.ect :ion .
From [3 .3] and [3-41 we find that the endemic equilibrium prevalences

Y =

must satisfy

I? i = hk i /(g 1 +hk i )

The equations [3 .4] and [3 .61 yield

n
g t b i k i /(g i +hk .) = 1

which is equivalent to an nth degree polynomial for h . For example if
n=2, then the quadratic equation is

k 1 k2 h2

	

[ q k + q 1 k2 - (q1 b 1 +q2 b2 )
k1 k2 ] h - qi q2

The endemic prevalences are found
of [3 .81 .

Since the incidence in group

from

[3.21, the total incidence of the population per year divided by the
population size (i .e ., the number of cases per person per year) is

n
365[

	

Ni(j 1~ ~ i )k i 0-)ki 0 -F i )/gi d i ]
i =1

	

=

365 ~ N i F i Id. -1

	

i

[3 .6]

[3 .61

[3 .71

R-1) = 0 .

	

[3 .81

using the positive root h

i is N i times the summation terms in

Using [3 .31 the number of cases per person per year satisfies

[3 .9]

x3 .10]




