
CHAPTER 4

MATHEMATICAL ANALYSIS OF THE MODEL FOR HOMOSEXUAL MEN

For systems of linear differential and difference equations, it is possible to find explicit
solutions (see introductory differential and difference equations textbooks) . The difference
equations in Figure 3 .2 are nonlinear because the incidences involve products of susceptible
fractions and the numbers of infectives . For systems of nonlinear differential and difference
equations, it is not generally possible to find explicit solutions, but it is possible to find numerical
solutions as a function of time . The numerical solutions of the system of nonlinear difference
equations in Figure 3.2 are called the simulations of the HIV transmission dynamics model in
Figure 3 .1 .

The value of the threshold quantity in an epidemiological model determines whether the
disease persists or dies out . For single population models the threshold quantity is usually the
contact number, which is the average number of adequate contacts of an infective during the
infectious period (Hethcote, 1976 ; 1989a) . This contact number is also called a reproduction
number since it gives the number of secondary cases "reproduced" by a typical infective during the
infectious period in a population in which everyone is susceptible (Anderson and May, 1991) . For
models in which the population is subdivided into groups with contacts between the groups given
by a matrix, the threshold quantity is the stability modulus (i.e ., the largest real part of an
eigenvalue) of the contact matrix (Lajmanovich and Yorke, 1976 ; Hethcote, 1978 ; Hethcote and
Yorke, 1984) . The disease dies out if the stability modulus is below zero and the disease persists if
the stability modulus is above zero . This threshold condition is equivalent to the spectral radius
(i.e., the maximum absolute value of an eigenvalue) of a transmission matrix being less than one

or greater than one (Hethcote and Van Ark, 1987) . A general formulation of the reproduction

number as a spectral radius has been applied to many models by Diekmann et al . (1990) .
Even though explicit solutions of the nonlinear differential or difference equations

corresponding to the model in Figure 3 .1 cannot be found, it is possible to determine the

threshold quantity as the spectral radius of a certain matrix . For the differential or difference
equations for a simplification of the model in Figure 3 .1 in which there is only one sexual activity
level, the threshold can be found explicitly. The explicit expression for the contact number a
(the threshold quantity) given in equation (4.7) is useful because one can see how each parameter
affects the threshold and hence affects whether the disease persists or dies out . In the
mathematical analysis of an epidemiological model, often the goals are to determine the threshold
quantity, to prove rigorously that below the threshold the disease prevalence goes to zero, and that
above the threshold there is a unique, positive equilibrium state and the disease prevalence
approaches this positive (endemic) equilibrium state (see Hethcote, 1976, 1989a) : In this chapter
we obtain some of these results for HIV dynamics models related to Figure 3 .1 . Those interested
primarily in the application of the model to HIV/AIDS and not interested in the mathematical
analysis may go directly to Chapter 5 .
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The equilibria of the model are the points with the property that solutions starting at
these points stay there . First a differential equations analog of the difference equations model
formulated in Chapter 3 for homosexual men is analyzed mathematically by finding the
equilibria and their stability. This model can have both a disease-free equilibrium (DFE) and a
unique endemic equilibrium (EE). Threshold results are obtained for this model which determine
whether the disease dies out (approaches the DFE) or remains endemic (approaches the EE) .
This differential equations model analyzed in Sections 4 .1 to 4.3 has one sexual activity level .
in Section 4.4 it is shown that the threshold results obtained for the differential equations model
also hold for the difference equations model with one sexual activity level . Although the
thresholds and stability for the models with two sexual activity levels cannot be determined
explicitly, the Jacobian is found in Section 4 .5 for the difference equations model with two sexual
activity levels corresponding to Figure 3 .1. For the parameter sets occurring in Section 6.2, the
eigenvalues of this Jacobian are found numerically in order to determine the stability of the DYE
by finding the value of the spectral radius relative to the threshold one .

Another HIV/AIDS model with multiple groups has been studied by Jacquez et al. (1988;
1989), Sattenspiel and Simon (1988), Koopman et al . (1989), Lin (1991), and Simon and Jacquez
(1992) . Their differential equations model is similar to the model considered in Section 4 .1, but
their model has constant recruitment into each group and the group population sizes can vary . In
contrast to our model, their model does not have transfers between the groups, their waiting times
are the same in all stages, and people with AIDS are assumed to be sexually inactive . The model
in Section 3.1 has constant recruitment into the two activity groups at a rate proportional to the
group sizes and the sizes of the active and very active groups are constant ; this also leaves a
variable number of people still active in the population . Other multiple-group models for
HIV/AIDS have been considered by Hyman and Stanley (1989), May and Anderson (1989),
Blythe and Castillo-Chavez (1989), Castillo-Chavez et al . (1989) and Kaplan et al. (1989) . See
the survey papers of Isham (1987) and Schwager et al . (1989) for more details and references .

4.1 Equilibria for the Differential-Equations Model with One Sexual Activity Level .

The first model considered is a differential equations analog of the difference-equations
models in Chapter 3 . This model is for a homogeneous population with only one activity level .
Let Yk represent the number of people in stage k where stage 4 people are susceptible (not
HIV- infected), stage 1 people are in the first infectious stage (see Chapter 2), • • • , stage m
people have AIDS, and stage m+1 people have died after having AIDS . Therefore, with N
being the (constant) number of people in the population, the variables satisfy Yo+ • • • +Ym+1 = N.
Define A1, j = 1,2, • • • , m to be the average number of sexual contacts that a person in infectious
stage j has with all people that are sufficient to cause HIV infection in susceptible persons . This
value is a composite of several parameters defined for the model in Chapter 3 .

The system of differential equations for this model corresponding to Figure 3 .1 is
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Yo = (6+ h)(N- Yo) - (jE l A Yj)(Y0 /kEok)
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m
Y 1 = ( E AjYj)(Y0 / E Yk) - ( b + it + 71)Y1 ,j=1

	

k=0

Yk = 7k-lYk-1 - ( b + µ + 7k)Yk , 2 < k < m + 1

where primes denote derivatives with respect to time and 7 m+1= 0 . In (4.1) the -(b + p)Yk
terms represent emigration and natural deaths, while (b + µ)N represents the immigration and
other inflow to replace the losses . The incidence term is the sum of the contact rates and the
numbers infected in the stages times the susceptible fraction. The model (4.1) can be simplified
by converting from numbers in the stages to the fractions in the stages . Let Ij = Yj/N be the
fraction of the population in infectious stage j, 0 < j < m + 1. The model can then be written

I 1 = g(I) Io - 01 ,

Ik = 7k-1Ik-1 - Wk , 2 < k < m + 1

m

	

m+1
where g(I) _ ( . E 1 AjIj)/(1 - Im+1), ~k = (b + µ + 7k), 7m+1 = 0, and 10 = 1- E Ij . By

j=1
examining (4 .2) on each face, it can be shown that the region

D = {(I1, • • • , Im+1) 1 0 < Ik < 1 ; I1 + • • • + Im+1 < 1}

	

(4.3)

is positively invariant . The right side is Lipschitz continuous for Im+l < 1 so that unique
solutions of initial value problems exist on a maximal interval which must be [0, m) since
solutions remain in D (Miller and Michel, 1982) . Thus the initial value problem is
mathematically well posed . The system (4.2) is epidemiologically reasonable since solutions

remain in [0, 11m+1
At equilibrium points, the right sides of the system (4.2) are zero. There are two possible

equilibrium points for this model : the trivial or disease-free equilibrium (DFE), and an endemic
equilibrium (EE) which is explicitly derived below . The DFE, with Io = 1 and Ik = 0 for
1 < k < m + 1, is always in the region D. The EE below is in D when the parameter values
satisfy the condition of being above the threshold . To obtain the EE, work backwards from the
(m+1)st equilibrium equation, solving for Ik- 1 in terms of Ik to get :

Ik = [ k "7] II6+j x Im+1 , 1 < k < m .

The 11 = 0 equation gives Io in terms of the other Ik values ; using (4.4), simplification gives
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Using Io + • • • + Im+i = 1, the Im+1 term at endemic equilibrium satisfies
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In many epidemiological models a contact number serves as the threshold quantity with 1 as the
threshold value (Hethcote, 1976 ; Hethcote and Van Ark, 1987) . In the following sections we show
that the contact number or given by (4.7) is the threshold quantity which determines whether
the disease dies out (a< 1) or remains endemic (o > 1) . However, we first give a heuristic
interpretation of the contact number or which explains why it is a reasonable threshold quantity .
The quotient 7k/4 = 7kl(s + µ + 7k) is the probability that an infective leaving stage k goes
into the next infectious stage (k + 1) instead of migrating out of the community or dying . Thus
the product of the 7k/4 up through (j- 1) in the expression (4.7) for or is the probability
that an infective reaches stage j. The contact rate of infectives in stage j is A j and the mean
waiting time in stage j is 1/~j so that Aj/~j is the mean number of adequate contacts
(sufficient for transmission of HIV infection) of an infective while in stage j. Thus the summation
in the expression (4 .7) for or is the sum over all infectious stages j of the probability of
reaching stage j times the mean number of adequate -contacts while in stage j. Hence the
contact number or is the average number of adequate contacts of an infective during all of the
infectious stages . Since the contact number or is the average number of new infectives produced
by an infective during its infectious stages in a totally susceptible population, it is sometimes
called the basic reproductive number (Anderson and May, 1991). It is intuitively reasonable that
if or < 1, then each infective is replaced with less than one new infective so that the disease dies
out (the DFE is asymptotically stable). However, if or > 1 so that the average infective in a
totally susceptible population is replaced with more than one new infective, then the disease
should persist (the DFE is unstable) . Below and in the following sections we show that when
o > 1 the disease persists, there is a unique endemic equilibrium and all solutions approach the
endemic equilibrium .

Lemma 4.1 If v > 1, then the endemic equilibrium given by (4.6) and (4 .4) is a distinct
equilibrium in D and is the only equilibrium in D other than the DFE

,
proof If v > 1, then Im +1 given by (4.6) is positive and 1/Im + 1 is 1 plus a positive quantity

so h+1 < 1 . Thus all of the Ik for 0 < k < m are positive by (4 .4) and (4.5) . Since the sum of

these positive Ik values adds to 1, each of them must be less than one, and this equilibrium is an
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given in (4 .6), the equilibrium values Ik and Io are given by (4 .4) and (4.5) .



EE in D. If o• = 1, then the EE given by (4 .6) and (4 .4) is the DFE. If o• < 1, then I. +1
is negative, and this equilibrium is not in D.I

4.2 Stability of the Disease-Free Equilibrium .

The local and global stability of the DFE are now analyzed . Recall that the incidence I
(rate of new infections) is

I = g(I)IO = LAjij] I1 ky 11k 1 ( 1Im+1)
-1

The second and third factors of I are

I 1 kF_. 1Ik] f1 + Im+1 Im+1 + Im+1 + . . . .

	

= I l - kE 1Ik - Im +ikE llk - Im+1kE 1Ik - . . . .

so that

M
I =

jE1
A Ij - G(I) ,

where G(I) = AjIJ)(Ii I'+1).(J=E1

	

i=E 1 )(k=E0
k

M
model, we replace the incidence term I by I L = jE1 AjIj . To check for stability by linearization,

define I = [I 1 ,I2,

	

Im+1]T, G(I) as above, and the m+1 x m+1 matrix A as

A =

The model (4.2) becomes

The linearization of this is

Xr-61 a2 A3
7 1 -6 0
0

	

72 -~ 3

0

	

0

TI = AI - [G(I),0, . . . ,0]
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G(I) is o(I), i .e., h0 G(I)/ ill= 0, so to linearize the

am 0
•

	

0 0
•

	

0 0

7m -1;m + 1

The local stability of the DFE is determined by examining the eigenvalues of A at the DFE .

Lemma4.2. For the above matrix A, the eigenvalue with largest real part is an algebraically
simple real eigenvalue .

proof Let Ek be the k x k identity matrix. Then the characteristic equation of A is

I aEm+1 - A I = ( a + ~m+1) I aEm - Am I , where Am is the m x m matrix obtained by crossing off
the last row and column of A, i .e., expanding around the last column of A . The eigenvalue
already obtained is a = -1;m + 1 = -(b + µ) < 0, and the remaining m eigenvalues of A are the

(4.10)
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eigenvalues of Am . Define the stability modulus s(A) to be the maximum of the real parts of the
eigenvalues of A and the spectral radius p(A) to be the maximum of the absolute values of the
eigenvalues of A . Let r = max{ ~ 1-A 1, ~ 2,' 3,

	

~ m} + 1 > 0, and B = A m + rEm . Therefore,
B is a non-negative matrix with eigenvalues Qk = (ak + r), k = 1, • • • , m, where {al, a2 i
am} are the eigenvalues of A m . Since infection in any stage Ik can spread the infection
throughout the population, the matrix A m (hence the matrix B also) is irreducible [Hethcote,
1978] . Since B is irreducible and nonnegative, p(B) = s(B) is an eigenvalue of B which is real
and geometrically and algebraically simple, and there exists a positive eigenvector w for s(B)
[Horn and Johnson, 1985, p 508] . Therefore, s(A m ) = (s(B) - T) is a real, simple eigenvalue of
A.1

By a similar approach [Horn and Johnson, 1985, p 492] we find bounds on s(A m ) given by

min {Ak-S-p} < s(Am ) < max {ilk-S#} .
1~ k~m

	

1~ k<m

Lemma 4.3. The eigenvalues of the matrix Am above are the roots of the characteristic equation
pm(a) = det[aE m - Am], where

PM(a) _ .Il (~j + a) - E [ .ll17](.k)[k1 jIl (~i + a),
,~=1
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(with II H = 1) .
i = ra+1

proof The proof is by induction on m. Observe that

I aE2 - A21 = I a+~ 1
Ai a+~21 = (a+~1)(a+~2) - A1(a+~2) - x272,

so (4.11) is true for m = 2 .

Assume that the induction hypothesis is true for m . Note that
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Expanding around the last column gives

m
I aEm+1 - Am+l I =(-1 )m+iam+i .ll l(-7j) + (a+~m+l)pm(a)
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(4.11)
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Notice that pm(0) = j H (~j) -
kN, [17j]k1

(a) , k
+1( l)]

, and Am _ (-1)mpm(0) .

By Lemma 4.1, s(A) is the real simple eigenvalue with largest positive (or least negative) real
root for p(a) = 0, so if s(A) < 0, then all eigenvalues of A have negative real parts, and if
s(A) > 0, at least one eigenvalue of A has positive real part . In the former case, the DFE is

locally asymptotically stable, and in the latter case, it is unstable . The Theorem below gives a
threshold condition on this property . The following Lemma will be used in the proof of the
Theorem.

Lemma 4.4. Let pm(a) be given by ( .x .11) and c be as in 47) . Then o < 1 implies that
pm(a) has no nonnegative real roots .

proof Notice that

n-1
Pn(a) _ (l;n+a)Pn-1(a) - an j 1 17j ,

	

(4.12)

so that pn = Pn-1 + (Sn+a)pn -1 . The proof is by induction on p n(0) > 0 and pn(a) > 0 for
a > 0 with 1 < n < m. For n = 1, Q < 1 implies that A 1- ~i < 0 . Then pl(0) = -A 1-}-~1 > 0,

and p 1 is 1 > 0, so the induction hypothesis is true for n = 1 .
Now assume that the induction hypothesis is true forA

1n < m -1 . Now o- < 1 for n + 1
implies

n+1

	

n+1 k-1 7 j

	

k
Pn+1(0) _ [ j II l(~j), 1 - k= 1 j II 1 4

j

	

k > 0.

Also pn+1(a) = Pn(a) + (j;n+1+a)Pn(a) > 0 for a > 0, since p n(a) > 0 and pn(a) > 0 for a > 0 .
Thus the induction hypothesis is true for m so that pm(a) has no nonnegative real roots .1

Theorem 4.5. Let o be given by (4.7) . Then the DFE for the model (4.2) is locally
asymptotically stable if v < 1, and the DFE is unstable if a > 1 .

proof The characteristic polynomial is I aE - A = (~m+1+a)pm(a) = 0. Notice that I aE - A ~
is a polynomial in a with leading coefficient +1, so that as a -4 w, I aE - A - + m .

m+1
Evaluating I aE - A ( at a = 0 yields jl1(4j)(1-o-), which has the same sign as 1 - o .

Therefore, if 1 - a < 0 there exists a > 0 such that I aE - A l = 0, so that a is a real
eigenvalue of A, and the DFE is unstable. On the other hand, if a < 1, Lemma 4.4 implies
that pm (a) has no real roots for a > 0, and the remaining root is -gym+1 = -(t5+µ) < 0. Since
Lemma 4.2 proves that s(A), the eigenvalue of A with largest real part, is real, the argument
above proves that s(A) < 0, so that the DFE is locally asymptotically stable [Miller and Michel,
1982, p 2611 .



Theorem 4.6. For a < 1, the DFE for the model (4.2) is globally asymptotically stable .

proof The transpose AT of the matrix A in (4.9) is irreducible with nonnegative off-diagonal

elements, so it has a positive eigenvector u corresponding to the eigenvalue s(A) = s(A T )
(Hethcote, 1978) . Note from the proof of Theorem 4 .5 that a < 1 is equivalent to s(A) < 0 .
As in Lajmanovich and Yorke [1976] or Hethcote [1978], consider the Liapunov function V = w • I
with derivative given by

V *' = W .I " = m'I - [G(I),0, • . .,0]T) = AT& .I - .& 1G(I) = s(A)ar •I - m1G(I) < 0 .

By Liapunov theory [Miller and Michel, 1982, p 227], all solutions approach the largest invariant

subset of the set M in which V 0. For the Liapunov function V above, this subset M is the
origin, so all solutions approach the DFE where the Ik are zero for 1 < k < m + 1 .1

4.3 Stability of the Endemic Equilibrium .

The local stability of the endemic equilibrium (EE) given by (4.4) and (4 .6) is proved by
methods similar to those in the previous Section .

Theorem 4.7. If a > 1, then the endemic equilibrium o f (4.2) is locally asymptotically stable .

proof The Jacobian of (4.2) evaluated at the EE given by (4.4) and (4.6) is

qn+1(0 )

B =

T1-~1 T2 T3
71 -~2 0
0

	

72 -~ 3

0

	

0

51

Om 0m+1
0

	

0

.-'m
0

7m -~ m+Y~

where Ti = Ail a - g(I) for 1 < i < m and Tm+1= -(1-1/ r)g(I) . From the proof of Lemma
4.3, we find that the characteristic equation corresponding to the matrix B is

I aE - B = qm+1(a) = 0

where qm+1(a) is the same as pm+1(a) defined by (4.11) with Ak replaced by rk. The proof is

by induction on q,,(0) > 0 and qn(a) > 0 for a > 0, with 1 < n < m + 1 . For n = 1, ql(a) _

d' - Tl + 1;1, so q1 = 1 > 0 and q1(0) = C1[1-(Al/C1)/o,+ g(I)] > 0 since o, > A1/C1 by (4.7) .

Assume that the induction hypothesis is true for qn(a) . If n < m, then

n+1

	

n+l k-1 7 j

	

T k

j l l (o 1 - kE l j11	
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k=1 j=1 ~ j
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(4.13)
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The positivity follows because the denominator o, in the second term is greater than or equal to
the numerator . If n = m, then

m+1

	

m k-1 7j

	

g(I)

	

m 7j (1 - 1/Q)g(I)
qm+1(0 )

	

_ [ .II (~j)] [ E
[

II		+ II		
t

	

J > 0.
J=1

	

k-1 j=1

	

i

	

k

	

j=1

	

j

	

S M + 1

As in the proof of Lemma 4 .4,

qn+1(a) = qn(a) + (G + a)gn(a) > 0

by the induction hypothesis for q n. Thus q.+,(0) > 0 and qm+1(a) > 0 so q m+1(a) > 0 for
a > 0, and qm+1(a) has no nonnegative real roots . If qm+1(a) had a complex conjugate pair of
roots with nonnegative real parts, then the graph of qm+1 would have a local minimum for some

nonnegative a . This is impossible since qm+1(a) > 0, so qm+1(a) has no complex roots with
nonnegative real part . Thus the endemic equilibrium is locally asymptotically stable .1

4.4 Stability of the Difference Equations Model with One Sexual Activity Level .

In Sections 4.1 - 4.3 thresholds and stability of equilibria are analyzed for the
differential-equations model corresponding to Figure 3 .1 with one activity level . The model
actually used in the calculations involve difference equations with a one-month time step . Here it
is shown that the stability threshold for the differential equations model also works for the
difference-equations model.

The difference equations for the one activity level model are

Yo+1 = Yo + (b + µ)(N - Yo) -
[hYfl
1j[Yo/kEo kn]

n+1 n
[hYfl

n m n

	

nY 1 = Y1 +

	

1 jYo/kEo k - ( b + µ + 71)Y1

Yk+1 = Yk + 7k-1Yk_1 - ( b + µ + 7k)Yk for 2 < k < m+1 .

As in Section 4.1, let In = Y~ /N be the fraction of the population in stage j so the model
(4.14) becomes

n+1

	

n

	

n n

	

t n
I 1 =I 1 + g(I )I o - S 1I1

	

(4.15)

Ik +1 = Ik + 7k-ilk-1 - ~kIk for 2<k< m+1

where g(In) _ ( .E AjI~)/(1-Im+i), ~k = ( b + µ + 7k), 7m +1= 0, and Io = 1 - ~E1I~ .
J=1

	

J=1

The equilibria for the difference-equations model (4.15) are precisely the same as those
for the differential-equations model (4.2) . The disease-free equilibrium (DFE) is the origin and
the endemic equilibrium (EE) is given by (4.4) and (4 .6) . Lemma 4.1 shows-that the EE is a

distinct equilibrium if o, > 1, where o is the contact number given by (4.7) . Let Vn be the

vector of Ik for 1 < k < m+1 and Vn+1 = F(Vn) be the nonlinear difference equations (4.14) .
The linearization of (4 .15) at the DFE is

(4.14)
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Vn+1 = TV' = (E + A)VV

	

(4.16)

where E is the identity matrix and A is the matrix in (4.9) .
The matrix T is irreducible and nonnegative if ~k < 1 for 1 < k < m+ 1 . This condition

that the mean waiting times 1/l k are greater than one month is always satisfied for our
application of the model for HIV/AIDS . The Perron-Frobenius theory applies to the matrix T
so that T has a real simple eigenvalue equal to its stability modulus s(T) and equal to its
spectral radius p(T), the corresponding eigenvector w is positive, and any nonnegative
eigenvector is a positive multiple of ' . Since p(T) = s(T) = s(A+E) = s(A)+1, the condition
s(A) < 0 is equivalent to p(T) < 1 . In Section 4.2 the condition s(A) < 0 is shown to be
equivalent to a < 1 where the contact number o , is given by (4.6) . Recall that an equilibrium
for a difference equation is locally stable iff the spectral radius of the linearization is less than 1 .
Thus we have proved the following Theorem, which is analogous to Theorem 4 .5 .

Theorem 4.8. If a < 1, then the DFE for the model (4 .15) is locally asymptotically stable . If
v > 1, the DFE is unstable .

Although the analog of Theorem 4.6 is probably true for the difference-equations model
(4.15) so that the endemic equilibrium (EE) is locally asymptotically stable for a > 1, the
obvious proof method does not quite work . The Jacobian at the EE is V = E + B, where B is
given by (4.13), and s(V) = s(E + B) = 1 + s(B) . From Theorem 4 .7 s(B) < 0 if o' > 1, so
s(V) < 1 if o, > 1. But V = E + B is not nonnegative since Tm+1 = -(1 - 1/cr)g(I) < 0, so that
the Perron-Frobenius theory does not guarantee that p(V) = s(V) . Thus this approach does not
quite prove that p(V) < 1, which is needed for local stability .

4.5 Stability for the Difference-Equations Model with Two Sexual Activity Levels

The stability analyses of the difference-equations model and the differential-equations
model corresponding to Figure 3 .1 with very active and active groups are analytically
intractable. Here the linearization at the DFE is found for the difference-equations model so the
spectral radius can be evaluated numerically . This is the model which is used in later chapters in
this monograph. Since the spectral radius (the largest absolute value of an eigenvalue) is often
used as a measure of the contact number or intrinsic reproduction number [Hethcote and Van
Ark, 1987; Diekmann et al ., 1988], its size indicates how far above or below the threshold value of
one the current parameters for the infectious disease process are .

The difference equations for the very active and active risk groups in the model
corresponding to Figure 3 .1 are :
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and Ak = pk x PH x wk x QH.

This system of nonlinear difference equations could be converted to a system for the
fractions in each class as in Section 4.4, but this is not necessary here since the eigenvalues and
spectral radius will be found numerically . Since there is some redundancy in the system above,

m+1 n
the subsystem for Xk and Yk with 1 < k < m + 1 is considered, where Xo = fN - E Xj andj=1

o

	

m+1 n
Y = (1-f)N - E Yk. The disease-free equilibrium (DFE) for this subsystem is the origin and

k=1

the matrix for the linearization around this DFE is given by :
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for 2<k< m+1 .
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(4.17)
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The eigenvalues of T above are found numerically for the parameter sets in later Chapters . If
the spectral radius satisfies p(T) < 1, then the DFE is stable . If p(T) > 1, the DFE is
unstable, and solutions approach the endemic equilibrium .




