Hydrodynamic/GIS Simulation of Storm Surge Flooding in the NY/NJ Harbor System

Nicholas B. Kim, Brian S. George, and Philip W. Simmons

ASCE Met Section Infrastructure Group Seminar 2009

HydroQual

Environmental Engineers & Scientists

> 201• 529 • 5151 www.hydroqual.com

Overview

- Hydrodynamic simulations of extreme surge event (Hurricanc Donna, September 1960)
- Operations of four storm surge barriers under projected sea level rises
- Assessment of inundation areas using GIS model

ECOMSED Features

3D Hydrodynamic Model
Current
Temperature
Salinity
Water Levels
Turbulence closure model

• Flexible Grid System: Orthogonal Curvilinear (Horizontal) and Sigma coordinates (vertical)

CALIBRATION OF MODEL

- Input data required:
 - Water elevations: Global Tidal Model and NOAA Sandy Hook station
 - Wind data from Atlantic City, Newark, LaGuardia, Bridgeport, and Groton
- Simulation period: September 1960
- Available field data:
 - NOAA tide gages
 - Maximum storm surge data

Figure 3. Comparisons of Computed and Observed Hourly Water Surface Elevations During Hurricane Donna

Projection Scenarios

	Sea Level Rise
Current Sea Level	
2020's	9.4 cm (3.7 inches)
2050's	24.6 cm (9.7 inches)
2080's	45.2 cm (17.8 inches)

Source: New York City Panel on Climate Change, 2009, Climate Risk Information

HydroQual

Development of a Digital Elevation Model (DEM)

- Spot Elevations obtained from New York City Department of Information Technology and Telecommunications (NYCDoITT)
- Isolated true terrain elevation points (removed elevated transportation structures, buildings, etc)

Development of a Digital Elevation Model (DEM)

Generated Triangulated Irregular Network (TIN)

Elevation Data as TIN

Developed an ESRI Grid with 100ftx100ft cells

Elevation Data as Grid

Inundation Mapping

- Storm surge values from model output were assigned at 50 foot intervals along shoreline
- A series of iterative steps were performed in GIS starting with the lowest surge elevation and flooding all adjacent cells with a terrain elevation less than the surge value

Overview of Inundation Zones

Current Sea Level

2080's Sea Level

Inundation Zones - Closeup

Inundated Land Area - Approximate Reduction of 25%

Inundated Land Area - Approximate Reduction of 25%

HydroQual

Affected Population - Approximate Reduction of 20%

Affected Population - Approximate Reduction of 20%

Affected Property Value - Approximate Reduction of 35%

Affected Property Value - Approximate Reduction of 35%

Hazardous Material/Waste Sites Impacted – Approximate Reduction of 50%

Hazardous Material/Waste Sites Impacted – Approximate Reduction of 50%

HydroQual

Summary

- Significant reduction in inundated area, affected population, affected property values, and hazardous waste sites with storm surge barriers in place
- Suggestions for more detailed analysis:
 - detailed data for shoreline features (bulkheads, etc)
 - integrating population projections for future scenarios
 - detailed information on property value and extent of damage
 - critical infrastructure impacted: WPCPs, subway station entrances, power grid, etc.