Storm Surge Modeling and Climatology for the New York City Metropolitan Region

Dr. Brian A. Colle Stony Brook University

Acknowledgements: Tom DiLiberto, Frank Buonuaito, and Kate Rojowsky

United States Coast Guard 1985

Storm Surge Modeling for the New York City Region

m

ADCIRC Simulation of NYC Flooding

Lidar image of business district of Manhattan showing seawall locations and elevation (arrows). The imager is flying above the Hudson River looking east.

1992 Nor'easter Flooding

Source: Metro New York Hurricane Transportation Study, 1995

Ref: Bloomfield, J., M. Smith and N. Thompson, 1999. *Hot Nights in the City*. Environmental Defense Fund,

FDR Drive during the December 1992 nor'easter (Bloomfield, 1999)

1950 Flooding of La Guardia airport and lower E side (Bloomfield, 1999 and NYC OEM)

Outline

- How well can a coupled atmospheric (WRF) and ocean (ADCIRC) modeling system predict storm surge for nor-easters and landfalling hurricanes around NYC?
- How sensitive are the simulated water levels to relatively small changes in the track and timing of hurricanes?
- What is the climatology of storm surges and associated storm tracks for the NYC area in last 50 years? How will the climatology change as sea level rises?

Stony Brook Weather Research and Forecasting Model (WRF) Domains

Advanced Circulation Ocean Model (ADCIRC) Grid (~108 K nodes)

•Run in barotropic mode (1-layer in vertical)

- Use hourly MM5/WRF winds and surface pressures to force model
- Tidal forcing at boundaries
- No wave forcing (yet)

48-h WRF Hindcast of Hurricane Gloria

- Insert Cyclone Using NCAR-AFWA Method:
 - Davis and Low-Nam (2001)
 - Specify Radius of Maximum Wind Maximum Wind Speed m/s, Radius of storm, and Wind profile

Hurricane Gloria Central Pressure

12-km WRF (GFS-PBL) Cloud Top Temperatures (°C)

06z Sept 26th - 12z Sept 28th

4-km WRF: surface reflectivity (rain intensity) and 10-m winds (full barb = 10 kts)

4-km WRF Tracks for Gloria

Modeled Hurricane Gloria Storm Surge

m

Landfall Timing Impact on Water Levels

Annual Observed Moderate Flooding Events at the Battery, NY '59-'07

Impact of Sea-Level Rise on NYC Flood Events IPCC (2007) 12-50 cm over next 50-100 yrs)

Impact of Sea-Level Rise on NYC Flood Events IPCC (2007), 12-50 cm over next 50-100 yrs)

Impact of Sea-Level Rise on Minor Storm-Tide Events (> 2.04 MLLW) (rise ~2.77 mm/yr at Battery--10-15 cm over 50 yrs)

Moderate Surge Cyclone Tracks -48/+12h

Tropical Storm Surge Tracks (1959-2007)

Conclusions

- Current generation of atmospheric and ocean models can realistically simulate hurricanes and storm surge in the NYC area.
- Even a relatively small change in track and timing can impact the water level forecast significantly Need to use ensemble of model forecasts.
- There is a lot of inter-decadal variability in storm surge (which we do not fully understand). We have not had a moderate coastal flooding event in NYC since 1996 – false sense of complacency?
- A wide variety of cyclone tracks can yield flooding problems for NYC. Flooding (even for nor-easters) will increase dramatically as sea level rises 10-50 cm over the next 50-100 years.

EXTRA SLIDES

Hurricane Gloria Initialization

Used NCAR-AFWA Bogus Scheme described by Davis and Low-Nam (2001)

Initialized at 00z 26th Sept.

Ambrose Tower Winds

Radar Comparisons Between Observed and Modeled around 06z Sept 27th

Central Pressure - 943 mb Central Pressure - 950 mb Central Pressure - 942 mb Moving 4km Steady 4km Franklin, Lord and Marks Jr. (MWR May, 1988) **GFS-PBL** Flight Level Winds (full barb = 5 m/s, flag = 25 m/s)

Reflectivity at 2.7-km with 2.7-km winds

(full barb = 5 m/s, flag = 25 m/s)

Reflectivity sweep taken at 2.7 km, 21-38dbz = gray scale

Minor Surge Cyclone Tracks -48/+12h

