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Abstract. Tropical cyclones are among the most damaging
extreme weather events. An increase in Atlantic tropical cy-
clone activity has been observed, but attribution to global
warming remains challenging due to large inter-annual vari-
ability and modeling challenges. Here we show that the in-
crease in Atlantic tropical cyclone activity since the 1980s
can be robustly ascribed to variations in atmospheric cir-
culation as well as sea surface temperature (SST) increase.
Based on a novel weather-pattern-based statistical model, we
find that the forced warming trend in Atlantic SSTs over the
1982–2020 period has doubled the probability of extremely
active tropical cyclone seasons. For the year 2020, our re-
sults suggest that such an exceptionally intense season might
have been made twice as likely by ocean surface warming.
In our statistical model, seasonal atmospheric circulation re-
mains the dominant factor explaining the inter-annual vari-
ability and the occurrence of very active seasons. However,
our study underscores the importance of rising SSTs that lead
to more extreme outcomes in terms of cyclone intensity for
the same seasonal atmospheric patterns. Our findings pro-
vide a new perspective on the contribution of ocean warming
to the increase in recent hurricane activity and illustrate how
anthropogenic climate change has contributed to a decisive
increase in Atlantic tropical cyclone season activity over the
observational period.

1 Introduction

Tropical cyclones (TCs) are highly destructive extreme
weather events (MunichRe, 2021), with a notable increase
in intensity and associated damages over recent decades
(Kossin et al., 2013, 2020; Holland and Bruyère, 2014; Knut-
son et al., 2019). Under anthropogenically caused climate
change, the impact severity of TCs is exacerbated due to
more extreme precipitation (van Oldenborgh et al., 2017;
Reed et al., 2020) and increased risk of storm surges follow-
ing from sea level rise (Lin et al., 2016), amongst others.

Whether the observed increase in TC intensity arises from
a long-term trend related to global warming, however, re-
mains unresolved. While climate models project an increase
in TC intensities (Bhatia et al., 2018; Walsh et al., 2016;
Knutson et al., 2020), a recent study suggests that after cor-
recting for missing storm observations prior to satellite ob-
servation there is no robust long-term trend in Atlantic major
hurricane counts (Vecchi et al., 2022).

TC formation and intensification mostly depends on the
atmospheric environment, which varies strongly on inter-
annual and intra-seasonal timescales. TC formation mainly
requires low vertical wind shear and strong low-level rela-
tive vorticity (Frank and Ritchie, 2001; Sharmila and Walsh,
2017) alongside some initial perturbation (Dieng et al.,
2017). The maximal potential intensity of a storm mostly de-
pends on the vertical temperature gradient from the ocean
surface to the upper troposphere (Emanuel, 1987; Emanuel
et al., 2013). Whether a storm reaches its maximum poten-
tial intensity is, however, strongly constrained by the large-
scale atmospheric circulation. As a result, substantial uncer-
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tainties on the impacts of dynamical effects of global warm-
ing on changes in TCs globally still exist (Knutson et al.,
2019, 2020).

Given the large uncertainty in forced atmospheric circula-
tion changes and assuming that these changes are small in
comparison to internal variability (Trenberth et al., 2015), a
promising way forward could be to focus on thermodynam-
ically forced changes instead. Using a numerical TC fore-
cast model, Reed et al. (2020) attributed a portion of the
rainfall of Hurricane Florence to thermodynamic effects of
global warming. This study followed the story-line approach
in which dynamical conditions of the weather event are re-
produced for different counterfactual thermodynamic forc-
ings. Such approaches are, however, restricted to individ-
ual events with clearly defined atmospheric conditions and
cannot be directly generalized to seasonal TC activity (Reed
et al., 2020).

For a more generalizable approach, the role of internal
variability needs to be established and separated from the
potential thermodynamic forcing (Shepherd, 2016). Climate
models could be used to this extent (Sippel et al., 2019), but
this would require a large ensemble of climate simulations
with adequate TC representation. Alternatively, circulation
analogues can be used. For example, Cattiaux et al. (2010)
reproduced European winter temperatures based on observed
circulation patterns and their influence on local temperatures.

Here we follow the idea of circulation analogues to con-
struct a probabilistic tropical cyclone season emulator based
on the empirically assessed influence of atmospheric circu-
lation patterns over the tropical north Atlantic on TC activ-
ity. We find that the sequence of weather patterns throughout
the main hurricane season (August–October) explains most
of the inter-annual variability in number of storms and their
intensities. The full observed variability in TC activity can
be reproduced by including sea-surface temperatures (SSTs)
over the main development region (MDR see Fig. S6 in the
Supplement) as an amplifying factor for most intense TCs.
Using counterfactual experiments, we furthermore investi-
gate the extent to which trends in Atlantic SSTs contribute to
highly active tropical cyclone seasons under current climatic
conditions.

2 Data and methods

2.1 Data and preprocessing

For the classification of weather patterns we use mean sea
level pressure (MSLP) and vertical wind shear (VWS) cal-
culated as the difference between 200 and 850 hPa eastward
wind from the ERA5 reanalysis (Hersbach et al., 2020) over
the period 1982–2020. Weather patterns are classified over
the tropical north Atlantic (10–90◦W and 10–30◦ N). For
the following pre-processing we transform the data from the
original 0.28◦× 0.28◦ to a 1◦× 1◦ grid. In order to remove

the direct influence of TCs in the reanalysis data, we re-
place the 3× 3 grid-cell square area encompassing the cen-
ter of the storm with the average of its surrounding 16 grid
cells. Finally, we transform the data from a 1◦× 1◦ grid to a
2.5◦× 2.5◦ grid and average 6-hourly data to daily data.

For the construction and validation of the TC emulator,
we use daily sea surface temperatures (SST) from the Daily
Optimum Interpolation Sea Surface Temperature (DOISST)
dataset (Huang et al., 2021). SSTs are averaged over the At-
lantic main development region (MDR) defined as 90–20◦W
and 10–20◦ N (see Fig. S6). The majority of Atlantic TCs
originate and develop in this region. Since the MDR is com-
monly used in the literature, we choose to use it here even
though it is slightly smaller than the region we use to classify
weather patterns.

We use historical climate model simulations from the
sixth phase of the Coupled Model Intercomparison Project
(CMIP6) to estimate anthropogenically forced trends in At-
lantic MDR SSTs over the period 1982–2014. A list of the
used models can be found in Table S1 in the Supplement. As
a reference for longer SST observations, the Hadley Centre
Sea Ice and Sea Surface Temperature dataset (HadISST) is
used (Rayner et al., 2003).

We use TC observations from the World Meteorological
Organization (WMO) agency provided by the International
Best Track Archive for Climate Stewardship (IBTrACS)
database (Knapp et al., 2010, 2018). Only storms in the At-
lantic basin that are classified as tropical storms are consid-
ered, resulting in a total number of 454 storms. Following
Bell et al. (2000), we use accumulated cyclone energy (ACE)
as a measure of seasonal TC activity:

ACE= 10−4
∑

v2
max, (1)

where vmax is the 6-hourly sustained wind speed in knots (kn)
of storms that have at least tropical storm strength according
to the Saffir–Simpson hurricane wind scale (vmax > 34 kn).

TCs are classified according to the Saffir–Simpson hur-
ricane wind scale, according to which TCs with sustained
winds of more than 64 kn are named hurricanes and TCs with
sustained winds above 96 kn are major hurricanes. Follow-
ing the definitions of the National Oceanic and Atmospheric
Administration (NOAA) National Weather Service (CPC,
2021), we classify Atlantic hurricane seasons into above-
normal seasons if they produce more than 126.1 ACE or ex-
tremely active seasons if the produced more than 159.6 ACE.

2.2 Daily tropical Atlantic weather patterns and sea
surface temperatures

We use a self-organizing map algorithm (SOM) to classify
daily tropical Atlantic weather into 20 patterns. A SOM is
an artificial neural network that is used for dimensionality
reduction and can be applied to classify synoptic weather
patterns (Hewitson and Crane, 2002). Here we reduce the
highly dimensional information of mean sea level pressure

Weather Clim. Dynam., 4, 1–12, 2022 https://doi.org/10.5194/wcd-4-1-2022



P. Pfleiderer et al.: Extreme Atlantic hurricane seasons made twice as likely by ocean warming 3

(MSLP) and vertical wind shear (VWS) over a 2.5◦× 2.5◦

grid spanning 10–30◦ N and 90–10◦W to a 5× 4 map where
each node represents a weather pattern (see Figs. S1–S2). We
use an initialization that is based on a principal component
analysis to guarantee the reproducibility of the results.

To guarantee that both variables (MSLP and VWS) have
equal weight in the classification, we standardize the vari-
ables to the 1982–2011 mean and standard deviation. The
combination of these two variables is a suitable choice for
our application as TC formation and intensification strongly
depends on VWS, while MSLP is generally helpful to char-
acterize the prevailing atmospheric circulation.

Some selected weather patterns are shown in Fig. 1: strong
TC activity is observed during weather pattern w0, which is
characterized by a large low-pressure anomaly and nearly no
vertical wind shear in the east of the MDR. Strong VWS in
this region leads to fewer and weaker storms (see weather
pattern w3). A strong high-pressure anomaly as in weather
pattern w15 is similarly TC inhibiting. A weak pressure gra-
dient from west to east with low VWS in the MDR is asso-
ciated with high TC activity (w12). All 20 weather patterns
are shown in the Supplement (Figs. S1, S2, S3).

The intensities of TCs also depend on SSTs in the region.
As shown in Fig. S7, the strongest storms are found over
warm SSTs. A quantile regression shows a significant rela-
tionship between warm SSTs and above median TC intensi-
ties. Weather patterns are not fully independent from SSTs:
weather patterns with low-pressure anomalies occur more of-
ten on days with warm SST anomalies (see Fig. 1 blue bars).
However, no systematic association between SSTs and VWS
is apparent (see Figs. S1 and S3). Although we will not be
able to treat our weather patterns as independent from SST
anomalies in the region, both variables contain distinct infor-
mation that is relevant for TC intensification.

2.3 Seasonal tropical cyclone emulator

We construct a probabilistic emulator that creates series of
storms with maximum sustained wind speeds for each day.
TCs are rare events, and their formation and intensifica-
tion involves complex physical processes. In our emulator
we break these processes down into three components that
are fully independent from each other: (i) storm formation,
(ii) storm duration and (iii) daily storm intensity. In these
components the daily weather pattern slightly alters the prob-
abilities for a new storm formation and its duration, and
the weather pattern in combination with regionally averaged
SSTs alters the probabilities for intensification of an existing
storm (see Fig. 2).

2.3.1 Storm formation

The number of storm formations varies strongly between
different large-scale weather patterns (Jaye et al., 2019).
Storm formation predominantly occurs during weather pat-

terns with low vertical wind shear, high relative humidity in
the lower troposphere and the existence of some kind of per-
turbation. The storm formation component relies on the fol-
lowing assumptions: (i) weather patterns can favor or ham-
per storm formations (Jaye et al., 2019; Lee et al., 2018) and
(ii) persistent weather conditions can further increase or de-
crease formation probabilities.

Based on these assumptions we estimate the probability of
a storm formation event Pgen on a day d with weather pattern
w(d) as

Pgen(d)= Pobs (gen|w(d))

×

√
Pobs

(
gen+1d |w(d − 1)

)
×Pobs

(
gen+2d |w(d − 2)

)
Pobs(gen|all)

. (2)

The first factor Pobs(gen|w(d)) is the observed probabil-
ity of storm formations for the given weather pattern w.
The second factor includes the probabilities of storm for-
mations 1 and 2 d after the weather pattern that occurred
1 d (Pobs(gen+1d |w(d−1))) and 2 d (Pobs(gen+2d |w(d−2)))
earlier respectively. These probabilities are given less weight
by applying a square root, and the factor is normalized by a
dividing by the overall observed storm formation probability
(Pobs(gen|all)).

2.3.2 Storm duration

There are numerous processes that can weaken and eventu-
ally dissipate TCs. The most common end of a TC is land-
fall. As we do not have information about the location of
storms in our emulator, estimating the duration of a storm is
challenging. For the development of this component we use
the following assumptions: (i) storms dissipate when mak-
ing landfall, (ii) the time a storm has before making landfall
is modulated by its formation location and (iii) the formation
location is to some extent influenced by weather patterns (see
Figs. S4 and S5).

To incorporate this dependence of storm duration on
weather patterns, we compute for each weather pattern a
Gaussian kernel estimate fg of all storms that have formed
on days with that weather pattern or on days of neighbor-
ing weather patterns in the SOM grid. In the emulator, the
duration D of a storm s is sampled from the Gaussian ker-
nel estimate fg corresponding to the weather pattern during
which the storm has formed w(df).

D(s)= fg
(
Dobs

[
wrow−wrow(df) < 2

& wcol−wcol(df) < 2
])

(3)

2.3.3 Storm intensity

We quantify storm intensity through the daily maximum sus-
tained wind speed. We use the following assumptions for our
daily storm intensity emulations: (i) intensification can be fa-
vored or hampered by specific atmospheric circulation pat-
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Figure 1. Tropical cyclone activity during selected weather patterns. Mean sea level pressure anomalies (a–d) and vertical wind shear
anomalies (e–h) for four selected weather patterns w0, w12, w3 and w15. The last row (i–l) shows relative deviations from the average of all
weather patterns expressed in standard deviations for the following statistics: frequency of the weather pattern, SST in the MDR, number of
storm formations during the weather pattern, storm days, hurricane days, major hurricane days and average ACE generated during days with
this weather pattern. A value of 2 indicates that the statistic is 2 standard deviations higher during this weather pattern than for the average
over all weather patterns. All 20 weather patterns are shown in Figs. S1, S2 and S3.

Figure 2. Schematic overview of the emulator. The input required to emulate TC seasons is shown on the left side. In the center, the three
components of the emulator are listed. On the right side, the functioning of the emulator is shown and the format of the output is indicated.
Arrows between the left-hand columns indicate which input is used in which components of the emulator. The light-purple arrow indicates
that the estimation of storm intensities depends on the previous intensity of a storm.

terns (Frank and Ritchie, 2001; Lee et al., 2016), (ii) the in-
tensity of a storm depends on the intensity on the day before,
(iii) warmer SSTs in the MDR favor the intensification of in-
tense TCs (Bhatia et al., 2018; Trepanier, 2020), and (iv) the
relationship between SSTs and storm strength can be regu-
larized by a quantile regression (see Fig. S7).

Assessing probability density functions (PDFs) for daily
storm intensities for all possible combinations of weather
patterns, SSTs and storm intensities on the day before is chal-
lenging given the insufficient number of storm observations.
Therefore, instead of estimating a PDF for the daily inten-
sity from all observations that match to certain conditions

(e.g. weather pattern w6, 28 ◦C SST and 60 kn wind speed
on the day before), we estimate the intensity PDF from the
100 storm observations that are most similar to these condi-
tions.

Furthermore, the distribution of observed intensities is
skewed towards weak storms, which would result in a low
intensity bias in a straightforward application of the nearest-
neighbor approach (see Fig. S10a–c). We therefore introduce
a linear relationship between regionally averaged SSTs and
storm intensities (see quantile regression in Fig. S7) to guar-
antee that the intensities from which we sample are not sys-
tematically too weak.
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For a given SSTtarget, we transform all observed storm in-
tensities to artificial pseudo-intensities vshifted using the slope
βτ of the next quantile τ below the observed storm strength
v(s,d):

vshifted(s,d,SSTtarget)= v(s,d)+βτ(s,d)

×
(
SSTtarget−SSTobs(d)

)
τ(s,d)=min(τ : v(s,d) > βτ + cτ ). (4)

We use the Euclidean distance metric applied on standard-
ized variables to identify the 100 nearest neighbors in terms
of weather pattern and storm intensity on the day before:

D(di,dj )
2
=

(
w(di)−w(dj )

)2√
1
N

∑
m(w(dm)−w)

2

+

(
vshifted(di − 1)− vshifted(dj − 1)

)2√
1
N

∑
m (vshifted(dm)− vshifted)

. (5)

For the weather patterns which are not a continuous vari-
able, we consider their coordinates in the SOM grid as loca-
tions and calculate differences between weather patterns as
the sum of the squared differences in row and column num-
bers.

w(di)−w(dj )=√(
wrow(di)−wrow(dj )

)2
+
(
wcol(di)−wcol(dj )

)2 (6)

3 Results

3.1 Validation of the emulator

Figure 3 shows the functioning of the emulator for three At-
lantic hurricane seasons: 2020 was a highly active season
with predominantly warm SSTs and favorable large-scale
weather conditions allowing for strong TCs throughout most
of the season; 2009 had similarly warm SSTs but less favor-
able weather conditions resulting in overall fewer days with
strong storms; and 1983 was an El Niño year with cool SSTs
in the tropical Atlantic and mostly unfavorable weather con-
ditions for TCs in the Atlantic basin. The chance of finding
storms and especially the chance of finding major hurricanes
in simulations (Fig. 3d) for the respective years reflects the
observed weather patterns and SSTs.

To validate the emulator, we re-simulated every hurricane
season between 1982 and 2020 a total of 1000 times using
the observed sequence of daily weather patterns and SST
averages over the MDR. We construct a new emulator for
each decade using all the years but the decade we want to
re-simulate as training data.

Large-scale weather patterns are sufficient to explain most
of the inter-annual variations in the number of storm forma-
tions (see Fig. 4a). The remaining spread between individual

simulation runs is to be expected as tropical storm forma-
tions have a strong stochastic component. Besides favorable
weather conditions, storm formation requires a (small-scale)
perturbation in the atmospheric flow such as African easterly
waves to be initiated (Dieng et al., 2017) – information that
is lacking in our emulator.

The number of storm days per season is strongly related
to the number of storms. The simulated storm durations en-
hance the representation of the number of storm days, re-
sulting in a accurate representation of storm durations (see
Fig. S5) and a Pearson correlation coefficient of 0.69 between
observations and the mean of all simulations (see Fig. 4b).

Finally, the storm intensity component produces a variety
of storm intensities including major hurricanes (see Fig. 4c).
As for the number of storm days, the number of strong storms
is tightly linked to the number of storm formations. But as
storm intensification is favored by certain weather patterns
and warm SSTs, the potential for intensification alters be-
tween years. In combination, this results in an adequate rep-
resentation of inter-annual variability in seasonal accumu-
lated cyclone energy (ACE) as shown in Fig. 4d.

According to the correlation coefficients, major hurricane
counts are slightly better represented than storm counts.
While the number of major hurricanes is tightly linked to the
amount of storm formations, the storm intensity component
is an additional instance controlling under which conditions
many major hurricanes are likely. The higher correlation for
major hurricane counts is therefore an indication for a mean-
ingful treatment of storm intensification in the emulator.

3.2 Sensitivity analysis

Strong simplifications were required to emulate TCs based
on sequences of weather patterns and regionally aver-
aged SSTs. The assumptions on which our methodological
choices are made are plausible and appear to work well; they
are, however, not without alternatives. We therefore test how
alternative emulators perform.

The most critical part is the treatment of SSTs in the inten-
sification component of the emulator as it directly influences
some of the results. As shown in Fig. S11, emulators without
any SST influence have considerable trends in residuals for
major hurricane counts of 0.3 per decade (or 0.9 per kelvin
of seasonal SST; see Fig. S11d). This misrepresentation in
major hurricanes translates into a negative trend in seasonal
ACE residuals (see Fig. S12). Including SSTs in the intensi-
fication component of the emulator reduces these trends sig-
nificantly, which suggests that SSTs contain information that
is required for an adequate representation of the strongest
TCs.

A simpler way of including SSTs in our emulator could
be to estimate intensity probability functions directly from
the 100 nearest neighbors in terms of weather patterns, storm
intensities on the day before and SSTs. While this approach
works well in the range of average conditions, there are sys-
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Figure 3. Functioning of the tropical cyclone emulator. (a) Sequence of daily weather patterns grouped into four categories from least
favorable for TC formation and intensification to most favorable for the years 2020 (purple), 2009 (cyan) and 1983 (orange). (b) Daily SSTs
averaged over the main development region for the same years. (c) Intensity of the strongest storm for each day grouped into the categories
storm, hurricane and major hurricane. (d) Probability of exceeding the intensity thresholds of panel (c) in simulations from the emulator.

tematic deviations between the nearest neighbors and the tar-
get conditions for more extreme conditions. As shown in
Fig. S10d–e, there is a warm bias for cool SSTs and vice
versa, which is a result of too few observations from which
the nearest neighbors can be searched. Similarly, there is a
bias towards weaker storms in the nearest neighbors (see
Fig. S10a–c). Reducing the number of nearest neighbors
from 100 to 20 only slightly reduces these biases. Ultimately,
this results in a lack of sensitivity in our emulator.

In the Supplement we present a number of additional em-
ulators with slightly altered storm formation (see Fig. S8),
storm duration (see Fig. S9) and storm intensity components
(Figs. S10–S14). Most of these altered emulators yield simi-
lar results which supports the robustness of our results.

3.3 The effect of ocean warming on recent TC activity

We deploy the emulator to assess the contributions of large-
scale atmospheric circulation and forced warming of tropi-
cal Atlantic SSTs towards the likelihood of extremely active
hurricane seasons. According to DOISST and over the pe-
riod 1982–2020, SSTs in the Atlantic MDR have warmed at
a rate of 0.3 K per decade (Fig. 5b). This trend is slightly

weaker in the HadISST dataset (Fig. 5a) for which also the
global trend in SSTs over the period 1982–2020 is weaker
than in other SST datasets (Yang et al., 2021). Using CMIP6
historical simulations, we estimate that the forced trend on
SSTs in the MDR throughout the hurricane season is 0.22 K
per decade for the period 1982–2014 (Fig. 5a). Thus, the ob-
served SST trend over the 1982–2020 period is to a large
extent forced by global warming.

To disentangle forced changes in TC activity from in-
ternal variability, we construct counterfactual scenarios in
which we first remove the forced SST trend as estimated
from CMIP6 simulations for the period 1982–2014. We then
shift these detrended SST time series so that on average
they match the values of the forced trend for the years 2020
and 1982 and call these artificial SST time series 2020 sce-
nario and 1982 scenario (Fig. 5c). The counterfactual SST
scenarios contain the observed year-to-year variations that
can be linked to natural modes of variability such as the El
Niño–Southern Oscillation (ENSO). The only difference be-
tween these two scenarios is that the 2020 scenario has 0.9 K
warmer SSTs than the 1982 scenario.

Weather Clim. Dynam., 4, 1–12, 2022 https://doi.org/10.5194/wcd-4-1-2022
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Figure 4. Cross-validated hurricane season emulations. (a) Number of storms as observed (black) and simulated (cyan). The light shading
shows the 95 % range of the 1000 simulations, and the darker shading shows the 66 % range. The mean is indicated by a solid line. The
cross-validated Pearson (Spearman) correlation coefficient between hindcasts and observations is indicated in the legend (see methods for
more details on the decadal cross validation). (b) As panel (a) but for the number of storm days in a season. (c) As panel (a) but for the
number of major hurricanes in a season. (d) As panel (a) but for the seasonal ACE.

Figure 5. Sea surface temperatures averaged over August–October and the MDR. (a) Ensemble mean of historical CMIP6 simulations (red)
relative to 1850–1900 and HadISST observations (gray) relative to 1870–1900. The 66 % range of the CMIP6 ensemble is represented by
the red shading. Linear trends for CMIP6 (HadISST) over the period 1982–2014 (1982–2020) are indicated by dashed lines. (b) DOISST
observations for the period 1982–2020 in blue and respective to the right y axis. Besides the linear trend in DOISST, the linear trend of
CMIP6 is indicated by a red dashed line using the left y axis. (c) Counterfactual SST scenarios based DOISST observations from which the
CMIP6 trend is removed. This detrended SST time series is shifted to the value of the CMIP6 trend in the year 1982 (cyan) and the year 2020
(purple). The remaining linear trend in these counterfactual scenarios is indicated by a dashed line.

Both counterfactual scenarios contain a small linear trend
of 0.08 K per decade (Fig. 5c). This remaining trend reflects
that the observed trend in DOISST is not solely due to global
warming but that natural climate variability also contributes
to the trend over the period 1982–2020.

In the CMIP6 historic simulations, no forced warming
in MDR SSTs is simulated for the period before 1980.
The long-term average over the period 1850–1900 (27.27 K)
is close to the value of the 1982–2014 trend in the year
1982 (27.32 K). Therefore, SSTs in the counterfactual 1982
scenario are similar to pre-industrial levels for the MDR.

https://doi.org/10.5194/wcd-4-1-2022 Weather Clim. Dynam., 4, 1–12, 2022
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Figure 6. Atlantic hurricane seasons under different counterfactual SST scenarios. (a) Two counterfactual SST scenarios: SSTs from which
the forced SST trend has been removed and that are shifted to 2020 SST levels (purple) and shifted to 1982 SST levels (cyan). The gray
rectangle indicates the range of observed seasonal SST averages. See Fig. 5 for more details. (b) Simulations for the counterfactual scenarios
of panel (a) displayed as boxplots. For years where the seasonal SST averages in the counterfactual scenario are outside of the range of
observed seasonal SST averages, the simulations are shown in lighter shading. (c) Simulations for all years aggregated and for the most
favorable years defined as years for which half of the simulations in the 2020 SST scenario have more than 126.1 ACE. (d) Probability of
above-normal seasons (ACE> 126.1). (e) As panel (d) but for all years and favorable years. (f) As panel (d) but for extremely active seasons
(ACE> 159.6). (g) As panel (e) but for extremely active seasons.

Despite differences in the 1982–2020 trend, the HadISST
dataset confirms the findings that SSTs in the MDR have not
warmed considerably before the 1980s.

Over the period 1982–2020, large-scale atmospheric cir-
culation patterns are the dominant factor explaining year-to-
year variability in TC activity. Our emulations show high TC
activity in the same years irrespective of the counterfactual
SSTs (see Fig. 6b). For instance, the low activity in the years
1982–1987 is also simulated in the 2020 scenario, while the
years 1995, 2005, 2010 and 2017 have a high likelihood of
becoming an extremely active season also in the 1982 sce-
nario.

Nevertheless, differences in seasonal TC activity are ap-
parent between the two scenarios. On average, the seasonal
activity is 25 ACE lower in the 1982 scenario as compared to
the 2020 scenario (see Fig. 6c). As a result, more than one-
third of the seasons that are simulated to be above-normal
seasons in the 2020 scenario are below-normal seasons in
the 1982 scenario (an above-normal seasonal activity being
defined as > 126.1 ACE, CPC, 2021). Similarly, the number
of simulations that are classified as extremely active (with
ACE> 159.6) doubles from 11 % in the 1982 scenario to
22 % in the 2020 scenario (see Fig. 6g).

Differences between the counterfactual scenarios are
stronger in years with high TC activity (see Fig. 6c). For
years in which half of the simulations of the 2020 scenario
are above-normal seasons, the simulations are on average
36 ACE more active in the 2020 scenario than in the 1982
scenario. For these years the risk of finding an extremely ac-
tive season (with ACE> 159.6) drops from 50 % under cur-
rent climate to 27 % in the 1982 scenario (see Fig. 6g). Our
results do not imply that increasing sea-surface temperatures
lead to more TC formations but point towards a trend of more
extreme outcomes for seasons with many TCs. This is in line
with a global trend towards more intense tropical cyclones
over the observational record as well as projections (Masson-
Delmotte et al., 2022).

Simulations from the emulator can moreover be used to
analyze contributions to extremely damaging hurricane sea-
sons such as that of 2020. The 2020 season is one of the
most active recorded hurricane seasons with an ACE index
of 178 and five major hurricanes in August–October (and
two additional major hurricanes in November). The season
was characterized by weather patterns that are favorable for
TC formation and intensification and relatively warm SSTs.

Weather Clim. Dynam., 4, 1–12, 2022 https://doi.org/10.5194/wcd-4-1-2022
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Figure 7. Influence of ocean warming on the hurricane season 2020. (a) Cumulative distribution functions for seasonally aggregated ACE
for the 2020 scenario (solid) and the 1982 scenario (dashed). All years between 1982–2020 aggregated in green, 2005 in purple, 2020 in
blue, and 1983 in orange. The area between the 2020 scenario and the 1982 scenario is shaded. The horizontal gray lines indicate 178 ACE
which was observed in 2020 (solid), the threshold for above-normal seasons 126.1 (dotted) and the threshold for extremely active seasons
159.6 (dashed). (b) Fraction of risk of an ACE> 178 season attributable to the SST difference between the 2020 SST levels and 1982 SST
levels (dashed lines). The histograms show the fraction of attributable risk (FAR) distributions from a 10000-member bootstrapping for the
1982 SST level scenario, and the vertical lines indicate the median FARs.

Figure 7a shows the probabilities of finding such a season
under counterfactual SST scenarios.

Compared to other years, 2020 has a high probability of
becoming an above-normal season (78 %) and a considerable
probability of becoming an extremely active season (60 %),
and 47 % of the simulations reach the observed ACE of 178
(see Fig. 7a).

Under a counterfactual 1982 SST scenario with similar
modes of internal climate variability, weather patterns and
short-term variations in Atlantic SSTs, the season would
have a lower likelihood of becoming an above-normal hur-
ricane season (61 %), an extremely active season (33 %) or
even a season with 178 ACE (21 %).

For 2020 weather conditions, the warming of Atlantic
SSTs since the 1980s has increased the probability of find-
ing a season with 178 ACE by a factor of 2.2 (see Fig. 7b).
For a year like 2005 which according to our analysis had
a higher likelihood of becoming an extremely active season
than 2020, the probability of finding a seasonal ACE of 178
is a factor of 1.6 higher in the 2020 scenario as compared to
the 1982 scenario. The likelihood of finding 178 ACE in any
year irrespective of the weather conditions is increased by a
factor of 2.4. The increase in likelihood of finding 178 ACE
is higher for seasons with weather conditions that are ham-
pering TC formation and development. For a year like 1983
with very few TC formations, there are no simulations that
reach 178 ACE in either of the counterfactual scenarios.

4 Discussion and conclusions

We have demonstrated that the observed Atlantic tropical cy-
clone activity over the last 40 years can be reproduced with a

probabilistic emulator based on large-scale weather patterns
and SSTs. Over this period, we observe a trend in weather
patterns favoring more active TC seasons. Whether or not
this trend in atmospheric circulation can be attributed to an-
thropogenic climate change or other external drivers such
as aerosol loadings (Dunstone et al., 2013) remains an open
question.

It is important to highlight that our weather patterns and
regional SST time series are not fully independent. Specifi-
cally, it appears that years with warm Atlantic SSTs are also
years where Atlantic SSTs are warm relative to the rest of
the tropics, and it has been argued that this effect of rela-
tive SSTs is the dominant contribution to TC activity (Sobel
et al., 2016; Murakami et al., 2018). The temperature differ-
ence between the tropical Atlantic and other tropical basins
has a strong impact on atmospheric circulation. However, our
sensitivity analysis suggests that SSTs over the MDR contain
relevant information and that our approach to include SSTs
in the emulator as an addition to the sequences of weather
patterns is suited to simulate intense TCs.

The potential maximum intensity a TC can reach depends
on the temperature difference between the ocean surface
and the tropopause layer, and it is plausible that increasing
SSTs have an amplifying effect on strong TCs (Emanuel,
1987). However, it has been argued that, over the satellite
era, tropopause layer cooling might have dominated over the
role of SSTs (Emanuel et al., 2013), a hypothesis we cannot
exclude based on our analysis.

Ultimately, the integration of SSTs in our model relies on
assumptions that are physically motivated and that lead to
a better representation of TC activity over the period 1982–
2020 than other assumptions. Since the early 1980s, an in-
crease in global average surface air temperature of more than
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0.5 K has occurred, and we would argue that over this period
SSTs in the region serve as a useful proxy for thermodynamic
changes in the climate system.

There is increasing consensus in the scientific literature
that the number of tropical cyclones might not or only mod-
erately increase, while the number of most intense storms
would increase substantially (Masson-Delmotte et al., 2022).
Our emulator results indicate that increasing SSTs could be
a potential driver for such an intensification, also allowing
for potential avenues to link those changes more directly to
anthropogenic climate change.

In this first application of the emulator we have focused
on ocean warming. Applying the emulator to future climate
projections from state-of-the-art earth system models might,
however, also help to estimate the dynamic forcing on TC ac-
tivity resulting from atmospheric circulation changes. While
most climate models have a poor representation of TCs, their
projections of atmospheric circulation changes contain valu-
able information that could be meaningfully analyzed using
this TC emulator.

By separating out the thermodynamic and dynamic forc-
ings for observed ACE, our approach allows us to link the
observed trend in seasonal cyclone activity and extreme sea-
son probability to warming SSTs. Our findings indicate that
warming SSTs over the tropical Atlantic might have already
contributed significantly to more extreme tropical cyclone
seasons and thereby to the fatalities, destruction and tril-
lion dollar losses that these cyclones have caused over the
last four decades (MunichRe, 2021). Given the projected in-
creases in SSTs with increasing warming, our findings sug-
gest that the probability of extreme seasons might further in-
crease. To minimize future risks, stringent emission reduc-
tions in line with achieving the goals of the Paris Agreement
would be required (Masson-Delmotte et al., 2022).

Code availability. All Python scripts required to per-
form the analysis and create the plots are available under
https://doi.org/10.5281/zenodo.6223723 (Pfleiderer, 2022).
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