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1 Introduction  

Since the beginning of 2020, anomalously high temperatures have repeatedly been reported in Siberia. 

For instance, on June 17, 2020, the Guardian reported that Russia as a whole had experienced record 

high temperatures in 2020, with the average from January to May being 5.3°C above the 1951-1980 

average1 and contributing to January to May globally averaged temperatures ranking 2nd warmest on 

record. On June 23, the World Meteorological Organization (WMO) announced that it was ñseeking to 

verify a reported new record temperature north of the Arctic Circle [of] 38°C on 20 June in the Russian 

town of Verkhoyansk amid a prolonged Siberian heatwave and increase in wildfire activityò2. 

Subsequently, numerous media (newspapers, televisions, radios) have reported on the event as well as 

on the Siberian heat anomaly persisting since early 2020. The June 20 Arctic temperature record was 

then confirmed on June 30 by Russiaôs meteorological service3. It should be noted that this temperature 

is not reproduced by the (lower than station resolution) ERA5 reanalysis, which only reaches 33.9 ºC 

on 21 June. 

 

The present report investigates the role of human-induced climate change in the likelihood and intensity 

of both of these events: a) the persistent warm anomalies across the Siberian region (60ï75ºN, 60ï

180ºE) from January to June 2020 (Figure 1), and b) the reported record temperature of 38°C at 

Verkhoyansk (67.55ºN, 133.38ºE) on June 20 (Figure 2). Both of these event definitions are chosen 

primarily to relate to the impacts of the extreme heat.  

 

While the record temperature north of the Arctic circle on June 20 made many headlines, impacts linked 

directly or in part to the extreme heat have been widespread. Persistent and unusually many wildfires 

have been observed. About 7,900 square miles of Siberian territory had burned so far this year as of 

June 25, compared to a total of 6,800 square miles as of the same date a year ago, according to official 

data, 45 these fires led to a release of 56 Megatons of CO2 in June 20206, more than the yearly CO2 

emissions of some countries (e.g., Switzerland)7. High temperatures and also the dry conditions in the 

first 6 months probably exacerbated these fires. Further impacts include health impacts on the 

population8 and the melting of permafrost which led to high damages, including environmental 

pollution: ñA fuel tank near the isolated Arctic mining city of Norilsk burst in late May after sinking 

into permafrost that had stood firm for years but gave way during a warm spring, officials said. It 

released about 150,000 barrels of diesel into a river.ò9  

 

It is important to highlight that the meteorological extremes assessed here are only partly representing 

one component of these described impacts, the hazard, whereas the impacts strongly depend on 

exposure and vulnerability too, as well as other climatological components of the hazard.  

The high temperatures in Siberia in JanuaryïApril were associated with much lower pressure than 

normal over the Arctic Ocean, extending south into northern Siberia (Figure 3). In this season low 

pressure is associated with less cold temperatures as it inhibits the clear skies of the Siberian High that 

cause strong longwave radiation from the snow. This pattern persisted, being very strong in Januaryï

March and less strong in April. It also supports direct advection of relatively warmer and moister from 

lower latitudes. A detailed analysis of factors that can lead to such situations is provided in Wu and 

 

1https://www.theguardian.com/environment/2020/jun/17/climate-crisis-alarm-at-record-breaking-heatwave-in-

siberia 

2 https://public.wmo.int/en/media/news/reported-new-record-temperature-of-38°c-north-of-arctic-circle 

3 https://twitter.com/WMO/status/1278995524079824898 

4 https://www.nytimes.com/2020/06/25/world/europe/siberia-heat-wave-climate-change.html  

5 https://www.nationalgeographic.com/science/2020/07/heat-wave-thawed-siberia-now-on-fire/ 

6 https://atmosphere.copernicus.eu/another-active-year-arctic-wildfires 

7 http://globalcarbonatlas.org/en/CO2-emissions 

8 https://www.nytimes.com/2020/06/25/world/europe/siberia-heat-wave-climate-change.html 

9 https://www.nytimes.com/2020/06/25/world/europe/siberia-heat-wave-climate-change.html 

https://aviales.ru/popup.aspx?news=6052
https://aviales.ru/popup.aspx?news=6052
https://aviales.ru/popup.aspx?news=6052
https://aviales.ru/popup.aspx?news=5418
https://www.nytimes.com/2020/06/09/world/europe/russia-arctic-oil-spill.html
https://www.theguardian.com/environment/2020/jun/17/climate-crisis-alarm-at-record-breaking-heatwave-in-siberia
https://www.theguardian.com/environment/2020/jun/17/climate-crisis-alarm-at-record-breaking-heatwave-in-siberia
https://public.wmo.int/en/media/news/reported-new-record-temperature-of-38%C2%B0c-north-of-arctic-circle
https://twitter.com/WMO/status/1278995524079824898
https://www.nytimes.com/2020/06/25/world/europe/siberia-heat-wave-climate-change.html
https://www.nationalgeographic.com/science/2020/07/heat-wave-thawed-siberia-now-on-fire/
https://atmosphere.copernicus.eu/another-active-year-arctic-wildfires
http://globalcarbonatlas.org/en/CO2-emissions
https://www.nytimes.com/2020/06/25/world/europe/siberia-heat-wave-climate-change.html
https://www.nytimes.com/2020/06/25/world/europe/siberia-heat-wave-climate-change.html


4 

Chen (2020). In MayïJune the opposite connection holds: higher pressure gives more sunshine, which 

increases temperature. We indeed find above-normal sea-level pressure during these months in the study 

area, although the deviations are small. Persistence of the high temperature anomalies is enhanced 

during these last months due to earlier snow melt (Figure 4). The bare soil absorbs more solar radiation 

and hence causes higher temperatures. 

The synoptic development that led to the record temperatures in Verkhoyansk (Figure 2) was initially 

associated with the blocking of the subpolar jet by a persistent low over Central Siberia which happened 

on 06-08 June 2020 resulting in the formation of a moderately high pressure ridge over eastern Siberia 

(somewhat east of Verkhoyansk). This pattern likely originated from a cut-off of the North Pacific 

anticyclone and could be considered to have pre-conditioned the high temperature anomaly in the 

second part of June. This pattern was characterized by z500 exceeding 558 gpm and MSLP being 1013-

1014 at max. Notably daily maximum temperatures increased to 27.8-28.0 °C on 08 June. After 12 June 

this center started to grow, expanding over much of Eastern Siberia (including Verkhoyansk). 

Meanwhile the local temperature experienced a short-term decrease during 09-12 June (daily maxima 

being 10 to 20 ºC) which might be associated with the air-mass transport from the Sea of Okhotsk. 

Starting from 16-17 June this high pressure center was under the influence of the intense transport of 

the tropical air masses associated with propagation of the tropical high pressure ridge from the south 

northeastward. Some earlier studies (e.g. Chol and Ahn 2019) report potential association of such 

development with the impact of Asian monsoon in spring-early summer time. This resulted in forming 

a sustained high pressure pattern centered a bit eastward of Verkhoyansk with a maximum z500 located 

between the Lena and Indigirka rivers exceeding 580 gpm and providing an advection of very hot air 

from the south. Notably this high pressure system was not as obvious in the surface pressure which 

revealed moderately high values of 1014-1018 hPa between 18 and 25 June when the maximum surface 

temperatures reached 36-38 ºC. The local high pressure center started to slightly decay after 27-28 June 

being shifted westward over Central northern Siberia. 

 

Figure 1: ERA5 near surface temperature (T2m) anomalies [  ] for Jan-Jun 2020. Reference period: 

1981-2010. The rectangle represents the study region at 60-75°N, 60-180°E. 
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Figure 2: Daily maximum temperature (TX) observations [°C] from January-June 2020 at station 

Verkhoyansk with positive and negative departures from the 1981-2010 climatological mean shaded 

red and blue respectively. TX peaks at 38  on June 20. 

 

 

 

 

 

 
 

Figure 3: Sea-level pressure anomalies [Pa] in JanuaryïApril 2020 (left) and May-June 2020 (right). 

Source: ERA5. 
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Figure 4: Snow cover anomalies (w.r.t. 1981-2010) [fract.] in June 2020, the low snow cover is 

caused by the preceding warm months and enables much higher temperatures in June. 

 

 
Figure 5: ERA5 near surface (T2m) temperature [  ] Jan-Jun climatology for 1981-2010. The 

rectangle represents the study region at 60-75°N, 60-180°E. 

 

To investigate potential trends in the frequency of occurrence of prolonged Siberian high temperatures, 

similar to the first half of 2020 (see Figure 1), we choose to analyse January-June averaged 2-m 

temperature over land in the region 60-75 ºN, 60-180 ºE. This region covers most of Siberia and includes 

the area affected by the 2020 spring monthly anomalies and Verkhonyansk, the station where the daily 

maximum temperature record was broken in June. The region is chosen to be representative of Siberia 

and, to avoid selection bias, is deliberately broader than the region that experienced the highest Jan-Jun 
temperatures in 2020. The January-June climatological mean temperatures are also relatively 

homogeneous across the study region (Figure 5).  

 

To investigate if human-induced climate change played a role in increasing the likelihood of the 

record breaking temperature at the station Verkhonyansk, we analyse June maximum value of daily 

maximum 2-m temperature, hereafter referred to as June TXx, at the location of the station 

Verkhonyansk. Rather than analyse summer maxima, we restrict to the month of June because there is 

a strong seasonal cycle in temperature that peaks in July. 
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2 Data and methods 

2.1 Statistical methods 

In this study we analyse time series from observational gridded data sets and station data where long 

records of observed data are available. Next we analyse climate model output for the same quantities. 

We follow the WWA approach to attribution. The analysis steps include: (i) trend calculation from 

observations; (ii) model validation; (iii) multi-method multi-model attribution and (iv) synthesis of the 

attribution statement. The methods for the statistical analysis of temperature extremes, model evaluation 

and the synthesis are explained here. 

 

Following this method we perform an attribution analysis for two event definitions, but also for two 

different periods in time for each model dataset: using data up to the event year, 2020, to attribute the 

current event and using data up to 2050 to answer the question how such events are likely to evolve 

further in the future. The probability ratios (explained here) for 2020 and 2050 are both given with 

respect to 1900.  
 

2.2 Observational data 

2.2.1 Verkhoyansk station data 

The meteorological station Verkhoyansk (67.55°N, 133.38°E) is located in the area of the local airport 

at the absolute elevation of 138 meters. The station was established in 1869 and provides continuous 

observations until now. Before 1926 the number of data gaps was quite large. Starting from 1926 8-

time observations were regularly taken with the number of gaps being typically below 10% and most 

occurring in winter time. This allows for quite an accurate record of daily mean, minimum and 

maximum temperatures. In September 1999 the station was relocated some 2.5 km southwestward from 

the airport. This did not result in any critical change in the station elevation (about 4 meters). In the 

earlier times two other major relocations were documented, specifically in October 1940 (by 1.5 km 

northward from its original location) and in April 1947 (by about 2.5 km southward to the airport area). 

Overall, the station should be considered as properly exposed, not influenced by any large infrastructure 

and providing a homogenous temperature record. Due to the large number of data gaps before 1926, we 

chose to analyse June TXx from 1926 onwards (Figure 6). 

 

Figure 6: The series of June TXx Verkhoyansk observed temperatures analysed in this study 

https://www.worldweatherattribution.org/wp-content/uploads/Methods-used-Siberian-heat-analysis-2020.pdf
https://www.worldweatherattribution.org/wp-content/uploads/Methods-used-Siberian-heat-analysis-2020.pdf
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2.2.2 Gridded datasets 

For the assessment of the large region we use two gridded datasets:  ERA5, which  is the latest global 

reanalysis product from ECMWF over 1979ï2020 and GISTEMP 250km anomalies (with respect to 

1951 - 1980), from the National Aeronautics and Space Administration (NASA) Goddard Institute for 

Space Science (GISS) surface temperature analysis (Hansen et al., 2010). 

2.2.2 GMST 

As a measure of anthropogenic climate change we use the (low-pass filtered) global mean surface 

temperature (GMST), where GMST is taken from the National Aeronautics and Space Administration 

(NASA) Goddard Institute for Space Science (GISS) surface temperature analysis (GISTEMP, 

Hansen et al., 2010). 

2.3 Model and experiment descriptions 

To attribute the observed changes to anthropogenic emissions of greenhouse gases and aerosols we use 

the following climate models. Because we analyse large-scale temperature extremes, especially in the 

JanuaryïJune Siberian mean, we can include models with relatively low resolutions. 

 

EC-Earth 
EC-Earth (Hazeleger et al., 2012) is a coupled atmosphere-ocean model with a resolution of T159 (about 

125 km). It is a 16-member ensemble of continuous simulations from 1860-2100 and is used as per the 

CMIP5 historical setup until 2005 and as per the RCP8.5 scenario from 2006. 

 

MPI-ESM1-2-HR 
The MPI-ESM1-2-HR earth system model was developed by the Max Planck Institute for Meteorology 

(Mauritsen et al., 2019, Mueller et al., 2018). It is a coupled global climate model. Here an ensemble of 

10 CMIP6 realizations in the HR resolution (atmosphere spectral T127, roughly 100km grid size, on 95 

vertical levels)  is analysed. The historical experiment is available on ESGF for 1850-2014. For the 

period 2015-2100 the SSP3-7.0 scenario was used. Based on the model output variable Tx (daily 

maximum temperature), the June TXx was computed, in addition to the average January-June 

temperature for the Siberian region based on the model output variable daily mean temperature. 

 

HadGEM3-A 
Hadley Center Atmosphere and JULES land model with prescribed sea surface temperatures and sea 

ice concentrations. Horizontal resolution N216 is ~60km mid-latitudes with 85 vertical levels including 

resolved stratosphere. Data available from 1960 onwards with 15 ensemble members 1960 - 2013 and 

larger ensembles thereafter for both historical and historicalNat attribution experiments. (Ciavarella et 

al., 2018). The historical experiment uses RCP4.5 climate forcings after 2005. 

 

CMIP5 

CMIP5 is a set of global climate models, developed by several institutes around the world (Taylor et 

al., 2012). Here a subset of CMIP5 models passing the validation steps are used, with historical and 

RCP8.5 experiments together spanning the period between 1850 and 2100. The list of models used is 

given in the validation tables section. 

 

CMIP6 

Data from the 6th Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) is also assessed. 

Therefore, we combine the historical simulations (1850 to 2015) with the shared socioeconomic 

pathways (SSPs) projections (OôNeill et al., 2016) for the years 2016 to 2100. Here, we only use data 

from SSP5-8.5. Models are excluded if they do not provide the relevant variables, do not run from 1850 

to 2100, or include duplicate time steps or missing time steps. All available ensemble members are used. 
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For the regional analysis 38 models (200 ensemble members) are used that passed the validation tests 

and for Verkhoyansk 28 models (166 ensemble members). 

 

SMILES 

Single model initial-condition large ensembles (SMILEs) are large ensembles of mostly CMIP5-class 

models. While the model versions of the SMILEs are almost all included in the standard CMIP5 archive 

described above, the main benefit of the SMILEs is their larger sample size. This enables fitting 

distributions to the data at a given time step, rather than having to fit a distribution over time, which 

requires subtracting an estimate of the forced response first. The SMILEs have varying ensemble sizes 

(16 to 100, totalling 286 simulations of historical and RCP 8.5) and are centrally archived in the Multi 

Model Large Ensemble Archive (http://www.cesm.ucar.edu/projects/community-projects/MMLEA/). 

Details and references on the archive can be found in Deser et al. (2020). 

 
MPI-GE 

The Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) is an ensemble of 100 

realisations of the Max Planck Institute Earth System Model in the low resolution set up (MPI-ESM1.1), 
run with varying initial conditions (Maher et al., 2019). Monthly data are available on the ESGF. For 

1850-2004 data from the historical experiment, and for 2005-2100 from the RCP8.5 scenario were 

downloaded and the January-June mean temperature for the siberian region calculated. 

3 Observational analysis: return time and trend 

The observational analysis of the station data is associated with very large uncertainties rendering the 

interpretation of the attribution results difficult. Confidence is much higher in the assessment over the 

large region where both data sets used give very similar results. Below the results of the assessment are 

given in tabular form with the first table representing the parameters of the distribution and the second 

table the trend assessment and changes in intensity and probability. 

 3.1 Verkhoyansk station 

To fit a GEV to the station data we apply two slightly different statistical methods to the same 

underlying data to investigate the sensitivity of the result to the fit. The first method is the main WWA 

method (fit shown in Figure 7) and the second method is from MeteoFrance (denoted MF). Both are 

described in the methods document. As the best estimate return time of the 2020 event was undefined 

we use the rounded value of the lower bound return time of 140 years with which to define the station 

event. 

 

 
 

http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
https://www.worldweatherattribution.org/wp-content/uploads/Methods-used-Siberian-heat-analysis-2020.pdf
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Figure 7: (a) June TXx observations from Verkhoyansk station (blue stars), fitted position parameter 

(thick red line), the 6 and 40 year return values (thin red lines) and the 2020 event (magenta square). 

Vertical bars indicate the 95\% confidence interval for the position parameter at the two reference 

years 2020 and 1900. (b) GEV fit. The data is plotted twice, being shifted with smoothed global mean 

temperature up to 2020 (red data points and fit with confidence interval) and down to 1900  (blue 

data points and fit with confidence interval), with the magnitude of the 2020 event shown as a 

horizontal magenta line.  

 

Table 1: Statistical distribution and fitted parameters for Verkhoyansk station observations. 

Dataset 

Statistical 

model 

Shift or 

scale? Sigma Shape 

VERHOJANSK (1926 - 2019) WMO: 24266 GEV shift 2.51 (1.885 ... 2.586) -0.366 (-0.31 ... -0.117) 

VERHOJANSK (1926 - 2020) WMO: 24266 

(MF method) GEV shift 2.67 (2.33 ... 3.1) -0.27 (-0.32 ... -0.21) 

 

Table 2: Results of statistical analysis of Verkhoyansk station observations. 

Dataset Event magnitude Return period 

Ypast - 

Ynow 

Probability 

RatioPR 

Change in 

intensity ȹI [ÁC] 

VERHOJANSK (1926 - 2019) 

WMO: 24266 38 °C 

undefined (140.39 ... 

325530000) 1900 - 2020 

undefined (2.8055 

... inf) 

1.041 (0.352 ... 

3.368) 

VERHOJANSK (1926 - 2020) 

WMO: 24266 (MF method) 38 °C inf (7.29 ... inf) 1900 - 2020 inf (7.29 ... inf) 1.63 (1 ... 2.29) 

 

3.2 Siberian region 

The covariate approach was applied first to ERA5 reanalysis (beginning 1979, as per the Methods 

above) with a Gaussian parametric fit returning a scale parameter shown in Table 3 and return period 

for the Siberian region Jan-June 2020 mean shown in Table 4, along with the event magnitude in this 

dataset and results for the Probability Ratioof the 2020 event and associated shift of the distribution 

(Figure 8). The figure shows that the Gaussian distribution describes the data well. For the return period 

of the 2020 event the best estimate and both bounds are well defined and so we choose the rounded best 

estimate of 130 years as the threshold with which to define the large scale event. 

 

 
Figure 8: (a) Jan - June average temperature over Siberian region from ERA5 (blue stars), fitted 

position parameter (thick red line), the 6 and 40 year return values (thin red lines) and the 2020 event 

(magenta square). Vertical bars indicate the 95\% confidence interval for the position parameter at 

the two reference years 2020 and 1900. (b) Guassian fit. The data is plotted twice, being shifted with 

smoothed global mean temperature up to 2020 (red data points and fit with confidence interval) and 
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down to 1900  (blue data points and fit with confidence interval), with the magnitude of the 2020 

event shown as a horizontal magenta line. 

 

We compared the reanalysis product with the same method applied to the longer GISS 250km anomaly 

dataset (anomalies to 1951 - 1980). As the value for the 2020 event was not yet available in GISS we 

mapped the ERA5 2020 value to a GISS anomaly value by linear regression. The regression between 

ERA5 and GISS anomalies has a correlation coefficient r = 0.996, providing strong support for such a 

mapping approach. The results are presented also in Tables 4 & 5. Gaussian scale parameter, return 

period, PR and intensity changes from the different datasets are all consistent with one another. 

 

Table 3: Statistical distribution and fitted parameters for Siberian region observations. 

Dataset 

Statistical 

model Shift or scale? Sigma 

ERA5 (1979 - 2019) Gaussian shift 1.036 (0.826 ... 1.197) 

GISS 250km anomalies (1916-2019) Gaussian shift 1.077 (0.917 ... 1.2) 

 

Table 4: Results of statistical analysis of Siberian region observations. 

Dataset 

Event 

magnitude Return period Ypast - Ynow Probability RatioPR 

Change in 

intensity ȹI [ÁC] 

ERA5 (1979 - 2020) -8.759 °C 

130.03 (28.566 ... 

2802.3) 1900 - 2020 

77268000 (22495 ... 

158670000000000) 

4.081 (2.417 ... 

5.554) 

GISS 250km anomalies 

(1916-2020) 5.7131 °C 

316.43 (80.732 ... 

3089.7) 1900 - 2020 

81976 (3581.6 ... 

10550000) 

2.846 (2.142 ... 

3.516) 

 

4 Model validation 

The climate models (see description in Section 2.3) were put through a rigorous model validation 

scheme before being included in the attribution analysis of June TXx at Verkhoyansk station and 

mean Jan-Jun temperatures in the Siberian region. The models were assessed according to the criteria 

laid out in the methods document to determine whether they are fit for purpose and can represent the 

extreme event well, allowing for a constant bias correction. To this end the seasonal cycle of modelled 

temperature was compared to the observed seasonal cycle of the Siberian region and Verkhoyansk 

station. Furthermore, the spatial pattern of observed and modelled climatology were compared. 

Lastly, the fit parameters of the statistical distribution were compared with the observed fit 

parameters. 

 

For the attribution analysis of June TXx at Verkhoyansk station, 33 out of 55 considered models were 

used (Table A1, Appendix), being those which were evaluated to be ñgoodò (the best estimate of the 

fit parameter for the models is within the confidence interval of the observed parameter estimate) or 

ñreasonableò (the confidence intervals of model and observed parameters estimates overlap, but the 

best guess of the models is outside the 95% confidence interval in the observations). One further 

model (MIROC-ES2L) was excluded for possessing a trend that was both inconsistent with the 

observed trend and also did not include any processes that could plausibly explain this discrepancy 

and was thus considered unphysical. We chose to include also the ñreasonableò models because only 

7 models from a single category (CMIP5) evaluated to ñgoodò, which would have provided little 

exploration of model uncertainty.  

 

https://www.worldweatherattribution.org/wp-content/uploads/Methods-used-Siberian-heat-analysis-2020.pdf
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For the Siberian region 50 out of 71 models achieved a ñgoodò evaluation (Table A2, Appendix), 

which was judged a sufficient sample on which to conduct the attribution analysis. 

5 Multi -method multi-model attribution 

This section shows probability ratios PR and change in intensity ȹI for all models that passed the 

validation and also includes the values calculated based on the observations. The synthesis of model- 

and observation-based results are discussed in Section 6. 

5.1 Verkhoyansk station 

Table 5: Results of the attribution analysis of the record-breaking high June temperature at 

Verkhoyansk station, comparing the event to a 1900 climate, as well as comparing future events of 

similar magnitudes to a 1900 climate. 

 

Model / 

Observations 

Threshold 

for return 

period 140 

yr 

Ypast - 

Ynow 

Probability 

RatioPR 

Change in 

intensity ȹI 

Ypast - 

Yfuture 

Probability 

RatioPR 

Change in 

intensity ȹI 

VERHOJANSK 

(1926 - 2020) 

WMO: 24266 38 °C 

1900 - 

2020 

undefined 

(2.8055 ... 

undefined) 

1.041 (0.352 ... 

3.368)    

VERHOJANSK 

(1926 - 2020) 

WMO: 24266 (MF 

method) 38 °C 

1900 - 

2020 inf (7.29 ... inf) 1.63 (1 ... 2.29)    

CMCC_CMCC-

CMS 25.69 

1900 - 

2020 

18.68 

(4.75 ... inf) 

1.26 

(0.99 ... 1.52) 

1900 - 

2050 

104.17 

(17.36 ... inf) 

2.72 

(2.16 ... 3.28) 

CNRM-

CERFACS_CNR

M-CM5 34.05 

1900 - 

2020 

7.75 

(4.67 ... 15.06) 

1.3 

(1.06 ... 1.54) 

1900 - 

2050 

25.57 

(12.73 ... 60.31) 

2.39 

(1.95 ... 2.82) 

CSIRO-

BOM_ACCESS1-

0 34.95 

1900 - 

2020 

10.42 

(4.48 ... 83.61) 

1.35 

(1.1 ... 1.62) 

1900 - 

2050 

44.29 

(13.82 ... 501.33) 

2.67 

(2.19 ... 3.19) 

CSIRO-

BOM_ACCESS1-

3 29.46 

1900 - 

2020 

14.42 

(5.59 ... inf) 

1.06 

(0.85 ... 1.31) 

1900 - 

2050 

85.71 

(24.03 ... inf) 

2.38 

(1.91 ... 2.9) 

CSIRO-

QCCCE_CSIRO-

Mk3-6-0 27.6 

1900 - 

2020 

7.51 

(5.45 ... 11.75) 

1.08 

(1 ... 1.17) 

1900 - 

2050 

33.29 

(21.57 ... 59.14) 

2.32 

(2.16 ... 2.47) 

IPSL_IPSL-

CM5A-LR 28.2 

1900 - 

2020 

inf 

(1239.07 ... inf) 

2.08 

(1.96 ... 2.21) 

1900 - 

2050 

inf 

(10113.92 ... inf) 

3.68 

(3.48 ... 3.89) 

IPSL_IPSL-

CM5B-LR 28.94 

1900 - 

2020 

inf 

(146.73 ... inf) 

1.67 

(1.46 ... 1.9) 

1900 - 

2050 

inf 

(855.31 ... inf) 

2.94 

(2.56 ... 3.34) 

MRI_MRI-CGCM3 35.71 

1900 - 

2020 

3.76 

(2.36 ... 8.39) 

0.97 

(0.7 ... 1.21) 

1900 - 

2050 

11.42 

(5.29 ... 36.26) 

2.05 

(1.48 ... 2.57) 

NASA-

GISS_GISS-E2-H 33.33 

1900 - 

2020 

19.42 

(6.24 ... inf) 

1.89 

(1.59 ... 2.18) 

1900 - 

2050 

70.75 

(17.07 ... inf) 

3.13 

(2.62 ... 3.63) 
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NASA-

GISS_GISS-E2-R 32.85 

1900 - 

2020 

10.07 

(4.39 ... 74.74) 

1.74 

(1.39 ... 2.07) 

1900 - 

2050 

25.18 

(8.85 ... 261.42) 

2.65 

(2.12 ... 3.15) 

HadGEM3-A 30.819 

1900 - 

2020 

103000000 

(132.02 ... inf) 

3.272 

(2.178 ... 4.17) 

1900 - 

2050 

 

( ... ) 

 

( ... ) 

ACCESS-CM2 (2) 25.772 

1900 - 

2020 

inf 

(11.11 ... inf) 

1.98 

(0.83 ... 3.12) 

1900 - 

2050 

inf 

(inf ... inf) 

 

( ... ) 

ACCESS-ESM1-5 

(3) 27.13 

1900 - 

2020 

inf 

(16.78 ... inf) 

2.02 

(1.23 ... 2.81) 

1900 - 

2050 

inf 

(491.56 ... inf) 

 

( ... ) 

AWI-CM-1-1-MR 

(1) 37.406 

1900 - 

2020 

inf 

(9.29 ... inf) 

3.8 

(1.56 ... 5.87) 

1900 - 

2050 

inf 

(14.66 ... inf) 

 

( ... ) 

CMCC-CM2-SR5 

(1) 27.939 

1900 - 

2020 

inf 

(9.67 ... inf) 

3.71 

(2.31 ... 5.09) 

1900 - 

2050 

inf 

(118.11 ... inf) 

 

( ... ) 

CNRM-CM6-1 (1) 28.596 

1900 - 

2020 

6.19 

(0.6 ... inf) 

0.94 

(-0.21 ... 2) 

1900 - 

2050 

inf 

(16.15 ... inf) 

 

( ... ) 

CNRM-CM6-1-HR 

(1) 31.628 

1900 - 

2020 

28.61 

(0.97 ... inf) 

1.6 

(-0.03 ... 3.26) 

1900 - 

2050 

inf 

(11.74 ... inf) 

 

( ... ) 

CNRM-ESM2-1 

(1) 31.56 

1900 - 

2020 

7.13 

(1.86 ... inf) 

1.72 

(0.58 ... 2.79) 

1900 - 

2050 

10.38 

(2.02 ... inf) 

 

( ... ) 

CanESM5 (50) 27.837 

1900 - 

2020 

inf 

(inf ... inf) 

3.35 

(3.11 ... 3.6) 

1900 - 

2050 

inf 

(inf ... inf) 

 

( ... ) 

EC-Earth3 (3) 30.096 

1900 - 

2020 

inf 

(120.51 ... inf) 

2.98 

(1.78 ... 4.19) 

1900 - 

2050 

inf 

(inf ... inf) 

 

( ... ) 

FGOALS-g3 (3) 35.845 

1900 - 

2020 

2795.4 

(15.04 ... inf) 

2.24 

(1.34 ... 3.24) 

1900 - 

2050 

inf 

(132.72 ... inf) 

 

( ... ) 

GFDL-CM4 (1) 29.478 

1900 - 

2020 

6.81 

(0.35 ... inf) 

1.2 

(-0.56 ... 2.94) 

1900 - 

2050 

1.67 

(0.28 ... 838234.7) 

 

( ... ) 

GFDL-ESM4 (1) 25.115 

1900 - 

2020 

6.21 

(0 ... inf) 

0.52 

(-0.68 ... 1.84) 

1900 - 

2050 

inf 

(520.88 ... inf) 

 

( ... ) 

HadGEM3-GC31-

LL (4) 28.65 

1900 - 

2020 

946.91 

(14.26 ... inf) 

2.33 

(1.47 ... 3.13) 

1900 - 

2050 

inf 

(inf ... inf) 

 

( ... ) 

HadGEM3-GC31-

MM (3) 33.144 

1900 - 

2020 

2.51 

(1.4 ... 4.72) 

1.44 

(0.54 ... 2.34) 

1900 - 

2050 

32.43 

(11.28 ... 133.27) 

 

( ... ) 

INM-CM5-0 (1) 28.265 

1900 - 

2020 

inf 

(0.55 ... inf) 

1.49 

(-0.2 ... 3.21) 

1900 - 

2050 

inf 

(713.31 ... inf) 

 

( ... ) 

IPSL-CM6A-LR 

(6) 31.568 

1900 - 

2020 

6.71 

(2.1 ... 61.87) 

1.27 

(0.52 ... 1.99) 

1900 - 

2050 

548017350 

(97.91 ... inf) 

 

( ... ) 

MIROC6 (50) 29.932 

1900 - 

2020 

22.24 

(11.84 ... 

42.21) 

1.16 

(0.94 ... 1.36) 

1900 - 

2050 

inf 

(inf ... inf) 

 

( ... ) 

MPI-ESM1-2-HR 

(2) 36.249 

1900 - 

2020 

14.13 

(1.73 ... inf) 

2.06 

(0.49 ... 3.56) 

1900 - 

2050 

9.18 

(1.62 ... 589.3) 

 

( ... ) 

MPI-ESM1-2-LR 

(10) 28.727 

1900 - 

2020 

336.74 

(17.58 ... inf) 

1.87 

(1.28 ... 2.46) 

1900 - 

2050 

inf 

(inf ... inf) 

 

( ... ) 
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MRI-ESM2-0 (2) 36.307 

1900 - 

2020 

25.16 

(1.87 ... inf) 

1.62 

(0.37 ... 2.83) 

1900 - 

2050 

inf 

(51.61 ... inf) 

 

( ... ) 

NESM3 (1) 26.558 

1900 - 

2020 

15.34 

(1.48 ... inf) 

2.56 

(0.31 ... 4.68) 

1900 - 

2050 

3123.42 

(7.63 ... inf) 

 

( ... ) 

UKESM1-0-LL (5) 28.97 

1900 - 

2020 

6.18 

(2.64 ... 15.39) 

1.81 

(0.98 ... 2.62) 

1900 - 

2050 

2645235120000 

(5348.56 ... inf) 

 

( ... ) 

 

 

5.2 Siberian region 

Table 6: Results of the attribution analysis of the prolonged heat in the Siberian region, comparing 

the event to a 1900 climate, as well as comparing future events of similar magnitudes to a 1900 

climate. 

Model / 
Observations 

Threshold 
for return 
period 130 yr 
[°C] 

Ypast - 
Ynow Probability RatioPR 

Change in 
intensity ȹI 
[°C] 

Ypast - 
Yfuture 

Probability 
RatioPR 

Change in 
intensity ȹI 
[°C] 

ERA5 (1979 - 
2020) -8.759 °C 

1900 - 
2020 

77268000 (22495 ... 
158670000000000) 

4.081 (2.417 
... 5.554)    

GISS 250km 
anomalies 5.7131 °C 

1900 - 
2020 

81976 (3581.6 ... 
10550000) 

2.846 (2.142 
... 3.516)    

MPI-ESM1.2-
HR (10) -8.383 

1900 - 
2020 

5157 
(2172.3 ... 10824) 

2.417 
(2.192 ... 
2.542) 

1900 - 
2050 

114610 
(52172 ... 242490) 

3.913 
(3.727 ... 
4.081) 

BCC_bcc-
csm1-1-m -7.75 

1900 - 
2020 

109016.66 
(37772.48 ... 
408410.81) 

2.72 
(2.57 ... 2.88) 

1900 - 
2050 

3328189.32 
(987395.36 ... 
14261378.66) 

4.35 
(4.14 ... 4.56) 

BNU_BNU-
ESM -12.67 

1900 - 
2020 

349475471.83 
(34086945.87 ... 
6166280784.11) 

4.11 
(3.94 ... 4.29) 

1900 - 
2050 

31275151496.14 
(2710147277.79 ... 
606075303240.33) 

6.99 
(6.74 ... 7.23) 

CMCC_CMC
C-CESM -13.3 

1900 - 
2020 

475.85 
(207.2 ... 1221.83) 

1.76 
(1.62 ... 1.9) 

1900 - 
2050 

23692.74 
(8637.52 ... 
72287.7) 

3.92 
(3.71 ... 4.13) 

CMCC_CMC
C-CMS -12.01 

1900 - 
2020 

1027.34 
(461.94 ... 2622.24) 

1.96 
(1.85 ... 2.08) 

1900 - 
2050 

55815.48 
(21644.69 ... 
172007.66) 

4.24 
(4.05 ... 4.46) 

CNRM-
CERFACS_C
NRM-CM5 -13.55 

1900 - 
2020 

6400.76 
(4050.22 ... 
11345.34) 

2.43 
(2.36 ... 2.53) 

1900 - 
2050 

257456.1 
(153370.76 ... 
474742.24) 

4.47 
(4.38 ... 4.58) 

CSIRO-
BOM_ACCES
S1-0 -9.78 

1900 - 
2020 

3583.94 
(1833.78 ... 9089.35) 

2.5 
(2.38 ... 2.66) 

1900 - 
2050 

179537.85 
(79407.21 ... 
501784.59) 

4.96 
(4.75 ... 5.19) 

CSIRO-
BOM_ACCES
S1-3 -8.45 

1900 - 
2020 

1851.25 
(889.12 ... 4469.25) 

2.05 
(1.93 ... 2.18) 

1900 - 
2050 

128529.22 
(55978.8 ... 
339380.17) 

4.57 
(4.37 ... 4.78) 

FIO_FIO-ESM -10.75 
1900 - 
2020 

334.42 
(201.15 ... 596.89) 

1.61 
(1.54 ... 1.68) 

1900 - 
2050 

4761.13 
(2493.98 ... 
9548.91) 

2.77 
(2.65 ... 2.89) 

INM_inmcm4 -9.48 
1900 - 
2020 

859.4 
(380.86 ... 2464.4) 

1.87 
(1.74 ... 1.99) 

1900 - 
2050 

21620.28 
(7916.15 ... 
79429.64) 

3.43 
(3.21 ... 3.63) 
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IPSL_IPSL-
CM5A-LR -8.52 

1900 - 
2020 

229787.88 
(108683.52 ... 
548418.33) 

2.51 
(2.44 ... 2.59) 

1900 - 
2050 

13319339.61 
(5846617.82 ... 
34725830.68) 

4.44 
(4.34 ... 4.54) 

IPSL_IPSL-
CM5A-MR -7.1 

1900 - 
2020 

38099.22 
(14740.45 ... 
125396.22) 

2.18 
(2.08 ... 2.29) 

1900 - 
2050 

1950219.5 
(649609.24 ... 
7397378.47) 

3.96 
(3.79 ... 4.13) 

MIROC_MIRO
C-ESM-CHEM -9.89 

1900 - 
2020 

376026794.01 
(35097379.79 ... 
9904336716.06) 

3.8 
(3.66 ... 3.98) 

1900 - 
2050 

46974628761.99 
(4163914971.46 ... 
1276608970267.47) 

7.61 
(7.39 ... 7.84) 

MIROC_MIRO
C-ESM -9.63 

1900 - 
2020 

14690116.44 
(2754617.4 ... 
119119789.32) 

3.55 
(3.4 ... 3.73) 

1900 - 
2050 

1643668973.54 
(292485620.53 ... 
13914772142.24) 

6.94 
(6.72 ... 7.17) 

MIROC_MIRO
C5 -11.64 

1900 - 
2020 

27914.24 
(13811.83 ... 
68475.76) 

2.42 
(2.32 ... 2.55) 

1900 - 
2050 

1714170.06 
(785785.91 ... 
4483455.02) 

4.62 
(4.49 ... 4.76) 

MPI-M_MPI-
ESM-MR -8.24 

1900 - 
2020 

77916.1 
(29817.83 ... 
269695.66) 

2.99 
(2.86 ... 3.15) 

1900 - 
2050 

3094325.79 
(1024242.05 ... 
12206162.06) 

5.06 
(4.85 ... 5.28) 

MRI_MRI-
CGCM3 -10.55 

1900 - 
2020 

128.06 
(77.3 ... 241.85) 

1.65 
(1.54 ... 1.78) 

1900 - 
2050 

3363.92 
(1700.61 ... 
7814.05) 

3.5 
(3.27 ... 3.74) 

NASA-
GISS_GISS-
E2-H-CC -10.22 

1900 - 
2020 

519844.65 
(96020.82 ... 
5191824.61) 

2.8 
(2.64 ... 2.97) 

1900 - 
2050 

18876850.06 
(2891642.34 ... 
238869471.96) 

4.45 
(4.21 ... 4.68) 

NASA-
GISS_GISS-
E2-H -9.78 

1900 - 
2020 

432483.4 
(176611.48 ... 
1243253.83) 

2.61 
(2.53 ... 2.73) 

1900 - 
2050 

19608930.67 
(7265526.97 ... 
60235112.47) 

4.34 
(4.21 ... 4.47) 

NASA-
GISS_GISS-
E2-R -10.68 

1900 - 
2020 

7697.5 
(3934.54 ... 
16458.92) 

1.99 
(1.9 ... 2.09) 

1900 - 
2050 

114459.43 
(52260.12 ... 
278965.66) 

3.03 
(2.89 ... 3.17) 

NCAR_CCSM
4 -10.39 

1900 - 
2020 

75048.62 
(41686.78 ... 
144698.82) 

3.15 
(3.08 ... 3.26) 

1900 - 
2050 

2538659.66 
(1322783.9 ... 
5128333.79) 

5.18 
(5.08 ... 5.29) 

NCC_NorESM
1-M -11.8 

1900 - 
2020 

5621.11 
(2512.73 ... 
15190.98) 

2.66 
(2.52 ... 2.81) 

1900 - 
2050 

233163.6 
(89455.08 ... 
725074.14) 

4.94 
(4.72 ... 5.16) 

NSF-DOE-
NCAR_CESM
1-BGC -9.93 

1900 - 
2020 

23189.75 
(7546.63 ... 
109379.49) 

3.04 
(2.87 ... 3.21) 

1900 - 
2050 

678296.23 
(190159.62 ... 
3872978.88) 

5.03 
(4.77 ... 5.28) 

HadGEM3-A 
ALL -12.06 

1900 - 
2020 

2361200 
(146240 ... 
68329000) 

3.41 
(2.86 ... 4.06) 

1900 - 
2050 

 
( ... ) 

 
( ... ) 

AWI-CM-1-1-
MR (1) -7.574 

1900 - 
2020 

14030.35 
(687.19 ... 439020) 

439020 
(2.03 ... 3.44) 

1900 - 
2050 

3579577050 
(21845129.1 ... 
1221722830000) 

4.86 
(4.26 ... 5.46) 

BCC-CSM2-
MR (1) -9.962 

1900 - 
2020 

471.1 
(47.1 ... 5868.6) 

5868.6 
(1.12 ... 2.4) 

1900 - 
2050 

282823902 
(3075592.16 ... 
48481837100) 

4.2 
(3.63 ... 4.78) 

CESM2 (5) -7.59 
1900 - 
2020 

63089.58 
(14487.54 ... 
315955.59) 

315955.59 
(2.94 ... 3.59) 

1900 - 
2050 

11220208200 
(1017963800 ... 
138662239000) 

5.61 
(5.31 ... 5.91) 

CESM2-
WACCM (3) -9.024 

1900 - 
2020 

16768.21 
(3225.11 ... 
103297.11) 

2.79 
(2.42 ... 3.16) 

1900 - 
2050 

2635871170 
(144754117 ... 
57141801500) 

4.97 
(4.61 ... 5.31) 

CIESM (1) -9.905 
1900 - 
2020 

29.11 
(3.11 ... 275.36) 

1.25 
(275.36 ... 
2.06) 

1900 - 
2050 

695.57 
(68.71 ... 8193.69) 

2.15 
(1.46 ... 2.83) 

CMCC-CM2-
SR5 (1) -9.23 

1900 - 
2020 

469151.97 
(13776.54 ... 
27819549.5) 

3.18 
(2.63 ... 3.72) 

1900 - 
2050 

7806252650000000 
(2379992540000 ... 
1020451130000000
00000) 

6.62 
(5.99 ... 7.23) 
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CNRM-CM6-
1-HR (1) -10.418 

1900 - 
2020 

10098.68 
(437.49 ... 
315195.18) 

10098.68 
(315195.18 ... 
3.05) 

1900 - 
2050 

35443181600 
(151606194 ... 
25362255800000) 

4.87 
(4.25 ... 5.48) 

CanESM5 
(50) -7.432 

1900 - 
2020 

134473.15 
(79965.55 ... 
223437.51) 

134473.15 
(223437.51 ... 
3.52) 

1900 - 
2050 

155126591000000 
(53282991600000 
... 
449637340000000) 

6.87 
(6.78 ... 6.96) 

CanESM5-
CanOE (3) -7.72 

1900 - 
2020 

104703.24 
(13061.39 ... 
1025559.75) 

3.32 
(2.83 ... 3.78) 

1900 - 
2050 

138593564000000 
(1968567690000 ... 
1443625090000000
0) 

6.77 
(6.39 ... 7.18) 

EC-Earth3 (7) -11.092 
1900 - 
2020 

864766.8 
(205824.01 ... 
3759569.21) 

864766.8 
(3759569.21 
... 3.5) 

1900 - 
2050 

274833638000000 
(15687565500000 
... 
5837131710000000
) 

6.09 
(5.87 ... 6.31) 

EC-Earth3-
Veg (4) -10.87 

1900 - 
2020 

3323104.59 
(484670.15 ... 
28209229.96) 

3.28 
(3.04 ... 3.53) 

3.53 - 
2050 

657934104000000 
(14412277500000 
... 
3908888200000000
0) 

5.98 
(5.73 ... 6.24) 

FGOALS-f3-L 
(1) -12.515 

1900 - 
2020 

1287.81 
(93.35 ... 23213.61) 

1287.81 
(23213.61 ... 
3.09) 

3.09 - 
2050 

991540124 
(7443665.77 ... 
205393237000) 

5.14 
(4.46 ... 5.84) 

FGOALS-g3 
(4) -13.724 

1900 - 
2020 

36972.49 
(7296.8 ... 
200192.58) 

2.83 
(2.51 ... 3.15) 

1900 - 
2050 

413274996 
(41524226.4 ... 
4855558040) 

4.4 
(4.12 ... 4.68) 

FIO-ESM-2-0 
(3) -10.406 

1900 - 
2020 

105821.55 
(13287.24 ... 
989541.44) 

105821.55 
(989541.44 ... 
3.87) 

1900 - 
2050 

2955730750 
(166029062 ... 
72304549500) 

5.45 
(5.04 ... 5.86) 

GFDL-CM4 
(1) -10.953 

1900 - 
2020 

279167.26 
(8047.34 ... 
14790299.7) 

2.82 
(2.23 ... 3.42) 

1900 - 
2050 

4044132030000000 
(1891764020000 ... 
2785019760000000
0000) 

5.98 
(5.44 ... 6.54) 

GFDL-ESM4 
(1) -9.868 

1900 - 
2020 

21.62 
(3.71 ... 120.94) 

21.62 
(120.94 ... 
1.24) 

1900 - 
2050 

878680.05 
(33238.12 ... 
35559254.2) 

2.53 
(2.11 ... 2.94) 

HadGEM3-
GC31-LL (4) -11.489 

1900 - 
2020 

37360.52 
(7614 ... 208395.23) 

37360.52 
(208395.23 ... 
2.74) 

1900 - 
2050 

23630039500000 
(791620476000 ... 
946091201000000) 

5.38 
(5.12 ... 5.65) 

HadGEM3-
GC31-MM (3) -11.466 

1900 - 
2020 

308.05 
(81.62 ... 1127.66) 

1.55 
(1.21 ... 1.89) 

1900 - 
2050 

107727278000 
(4009022080 ... 
3653994640000) 

4.69 
(4.37 ... 5.01) 

INM-CM4-8 
(1) -11.076 

1900 - 
2020 

71.8 
(8.47 ... 667.34) 

71.8 
(667.34 ... 
1.63) 

1900 - 
2050 

24064298.1 
(417335.6 ... 
2751496950) 

3.16 
(2.68 ... 3.63) 

IPSL-CM6A-
LR (6) -8.987 

1900 - 
2020 

33851.79 
(8945.43 ... 
140497.11) 

33851.79 
(140497.11 ... 
3.02) 

1900 - 
2050 

4588690190000 
(298324221000 ... 
84410690100000) 

5.61 
(5.36 ... 5.86) 

MIROC6 (50) -9.492 
1900 - 
2020 

12671 
(8277.73 ... 
19659.39) 

12671 
(19659.39 ... 
2.56) 

1900 - 
2050 

1264371450000 
(503891431000 ... 
3224805860000) 

4.8 
(4.72 ... 4.87) 

MPI-ESM1-2-
HR (2) -8.523 

1900 - 
2020 

2097.08 
(285.84 ... 17477.45) 

2.28 
(1.79 ... 2.26) 

1900 - 
2050 

10047945.1 
(559578.91 ... 
247646638) 

3.86 
(3.41 ... 4.3) 

MPI-ESM1-2-
LR (10) -9.814 

1900 - 
2020 

6198.4 
(2432.36 ... 
15973.56) 

6198.4 
(15973.56 ... 
2.78) 

1900 - 
2050 

5128678180 
(951888987 ... 
28953417500) 

4.73 
(4.54 ... 4.92) 

NorESM2-MM 
(1) -11.012 

1900 - 
2020 

122.63 
(21.64 ... 786.05) 

1.66 
(1.09 ... 2.98) 

1900 - 
2050 

435810.3 
(18596.74 ... 
15189481.98) 

3.75 
(3.1 ... 4.37) 
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UKESM1-0-LL 
(5) -12.621 

1900 - 
2020 

5774.56 
(1698.12 ... 
21228.96) 

5774.56 
(21228.96 ... 
2.2) 

1900 - 
2050 

5612837200000000
00 
(946529685000000
0 ... 
4500740100000000
0000) 

6.81 
(6.56 ... 7.06) 

MPI-GE (100) -8.572 
1900 - 
2020 

26073 
(20296 ... 31948) 

2.858 
(2.792 ... 
2.862) 

1900 - 
2050 

1444500 
(1046300 ... 
1828700) 

4.991 
(4.927 ... 
4.994) 

 

6 Hazard synthesis 

For both event definitions  we calculate the Probability Ratioas well as the change in magnitude of the 

event in the observations and the models. Only the models that have passed the evaluation above are 

included. We synthesise the assessment from the models with each other as well as with the observations 

to give an overarching attribution statement, following the same methodology as in Philip et al., 2018. 

First the observations are combined. As the natural variability is strongly correlatedðthey are based on 

the same observations over 1979ï2020ðwe just average the best estimate values and lower and upper 

bounds for this. The difference is added as a representation uncertainty (white extensions on the light 

blue bars). In contrast, the natural variability in the models is uncorrelated, so we can compute a 

weighted average. However, as the spread of the models is larger than expected from natural variability 

alone, we add a model spread term to each model and the weighted average (white extensions on the 

light red bars) to account for systematic model errors. In the Probability Ratio, we run into the problem 

that the 2020 event often is above the upper bound of the probability distribution in 1900, indicating 

that the event would have been impossible in that climate. This is indicated by an arbitrary large value 

of 1033 for the probability ratio. The results including this value are not mathematically well-defined 

and so are intended merely to indicate the situation described above. Finally, observations and models 

are compatible, so they are combined into a single result in two ways. Firstly, we neglect model 

uncertainties beyond the model spread and compute the weighted average of models and observations: 

this is indicated by the magenta bar. Secondly, as model uncertainty can be larger than the model spread, 

we also show the more conservative estimate of an unweighted average of observations and models, 

indicated by the white box around the magenta bar in the synthesis figures.  

6.1 The event compared to past climate 

6.1.1 Verkhoyansk station 

 
Figure 9: Synthesis of probability ratios (left) and changes in intensity (right) from the attribution 

analysis of June TXx at Verkhoyansk station. A figure including all models can be found in the 

appendix (Figure A1, Appendix). 

 

An event like the extreme temperature of 20th of June 2020 at Verkhoyansk station with inclusion of 

reasonable models has a best estimate Probability Ratio(PR) of 210 million (but possibly still less than 
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1). While the PR results are of low confidence (encompassing ñno changeò) the results for the change 

in intensity confidently show an anthropogenic shift, best estimate being 1.5°C (0.8 - 2.5°C). 

In the observations the best estimate and upper bound PR is infinite while the lower bound is 4.52.  

 

The change of intensity estimated from observations is 1.34°C (0.56 - 2.9°C). The model synthesis 

intensity change of 1.7°C (0.52 - 2.9°C) is therefore consistent with the intensity change from 

observations and the model + observed synthesis values are 1.51°C (0.81 - 2.5°C). 

 

The station does have a much smaller signal to noise than the large region - a standard deviation around 

the trend of around 2.5°C with a shift of only around 1.5°C means the uncertainties are large.The 

presence of an upper bound of the distribution close to the observed extreme will tend to produce large 

PR values for small shifts exacerbating the uncertainty in the Probability Ratio.. 

 

The weighting used to add model uncertainty in the synthesis makes it possible that models with 

divergent Probability Ratios are down-weighted unnecessarily by the algorithm, which assumes log-

normal distributions, so that we could expect larger values to be closer to the truth. Removing the 
weighting for model uncertainty gives PR (good models) > 4600. 

 

 

 

 

Table 7: Synthesis of probability ratios and changes in intensity from the attribution analysis of June 

TXx at Verkhoyansk station. The weighted average uncertainty range corresponds to the magenta bar, 

and the unweighted average uncertainty range to the white box, of the synthesis bar in Figure 9. 

Dataset 

Ypast - 

Ynow 

Probability ration PR [-] Change in intensity [°C] 

Best 

estimat

e 

Weighted 

average 

Unweighted 

average 

Best 

estimat

e 

Weighted 

average 

Unweighted 

average 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

VERHOJANSK 

(1926 - 2020) 

1900 - 

2020 

1.00E+3

0 2.81 

1.00E+3

1 2.81 

1.00E+3

1 1.04 0.352 3.37 0.236 3.4 

VERHOJANSK 

(1926 - 2020) (MF 

method) 

1900 - 

2020 

1.00E+3

0 7.29 

1.00E+3

1 7.29 

1.00E+3

1 1.63 1 2.29 0.875 2.41 

Observations 

average 

1900 - 

2020 

1.00E+3

0 4.52 

1.00E+3

1 4.52 

1.00E+3

1 1.34 0.555 2.89 0.555 2.89 

Models average 

1900 - 

2020 

1.02E+0

3 

3.22E-

05 

3.28E+1

0 

3.22E-

05 

3.28E+1

0 1.69 0.518 2.85 0.518 2.85 

synthesis 

1900 - 

2020 

2.05E+0

8 0.937 

2.23E+1

4 22.9 

1.96E+2

0 1.51 0.809 2.48 0.809 2.48 
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6.1.2 Siberian region 

 
Figure 10: Synthesis of probability ratios (left) and changes in intensity (right) from the attribution 

analysis of Jan-Jun mean temperature in Siberian region, comparing the 2020 event with 1900 climate. 

A figure including all models can be found in the appendix (Figure A2, Appendix). 
 

The synthesis of 50 good models and obs. is confident that PR is large, with a lower bound of almost 

600 and best estimate around 99,000, making the event effectively impossible in the natural world. All 

ógoodô models had the lower bounds of the PR estimates well above 1. There is a large degree of 

consistency between observational and model analyses for both PR and changes in intensity, so we have 

reason to be confident of the overall result. The observational average has a larger best estimate shift in 

intensity (around 3.5K) than the model average best estimate (around 2.5K), although the longer 

observational dataset (GISS) is closer to the models and the two values are well within each other's 

uncertainty estimates. 

 

Table 8: Synthesis of probability ratios and changes in intensity from the attribution analysis of Jan-

Jun mean temperature in Siberian region, comparing the 2020 event with 1900 climate. The weighted 
average uncertainty range corresponds to the magenta bar, and the unweighted average uncertainty 

range to the white box, of the synthesis bar in Figure 10. 

Dataset 

Ypast - 

Ynow 

Probability ration PR [-] Change in intensity [°C] 

Best 

estimate 

Weighted average 

Unweighted 

average 

Best 

estimate 

Weighted average 

Unweighted 

average 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

ERA5 

(1979 - 

2020) 

1900 - 

2020 

7.73E+0

7 

2.25E+0

4 

1.59E+1

4 

5.94E+0

3 

3.49E+1

4 4.08 2.42 5.55 2.2 5.79 

GISS 

250km 

anomalie

s 

1900 - 

2020 

8.20E+0

4 

3.58E+0

3 

1.06E+0

7 257 

7.84E+0

7 2.85 2.14 3.52 1.72 3.95 

Observat

ions 

average 

1900 - 

2020 

2.52E+0

6 

1.49E+0

3 

1.29E+1

1 

1.49E+0

3 

1.29E+1

1 3.46 1.99 4.85 1.99 4.85 

Models 

average 

1900 - 

2020 

1.63E+0

4 17.6 

1.51E+0

7 17.6 

1.51E+0

7 2.56 1.23 3.89 1.23 3.89 

synthesis 

1900 - 

2020 

9.93E+0

4 588 

3.48E+0

7 

1.30E+0

3 

1.23E+0

8 2.98 1.99 3.94 2.02 3.97 

 

 

A parallel analysis of 7 SMILES large ensembles was also conducted using a different method to the 

covariate approach.  Instead the large ensemble values at 2020 could be used in a Gaussian parametric 

fit and compared with the same from an earlier epoch. Due to the shorter experiment length the date of 

1950 was chosen in place of the 1900 baseline used for the rest of the analysis. 
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The SMILEs results gives a best estimate Probability Ratio(2020 to  the 1950 baseline) of around 1500 

(multi-model median) - 2200 (multi-model mean). The PR values for 2050 are an order of magnitude 

or more larger again, as would be anticipated. These values for both 2020 and 2050 would be even 

larger still if the analysis could be conducted to the same 1900 baseline as the models using the covariate 

approach.  

 

Using this different method of analysis we would draw very similar conclusions regarding the change 

in likelihood of the regional Siberian heat and so this provides independent evidence for the near 

impossibility of this event in the natural world (Table 9). 

 

Table 9: SMILES individual model values, mean and median PR 

Model 

Probability Ratio 

2020 vs 1950 

Probability Ratio 

2050 vs 1950 

CESM1-CAM5 (40) 1321 43886 

CSIRO-Mk3-6-0 (30) 1488 70964 

CanESM2 (50) 1733 135780 

EC-EARTH (16) 1910 33668 

GFDL-ESM2M (30) 7414 109580 

GFDL-CM3 (20) 1367 22796 

GFDL-CM3 314 33103 

Mean 2221 64254 

Median 1488 43886 

 

6.2 Future 

Different scenarios were used when modelling the future climate (see Section 2.3), however an analysis 

of the partition between model and scenario uncertainty in global mean surface temperatures at 2050 in 

the CMIP6 collection of coupled models indicates that scenario uncertainty still plays a small role 

compared to model uncertainty, responsible for perhaps 35% of the spread in GMST. These values can 

be read off from Figure 1 of Lehner et al, .2020. 

6.2.1 Verkhoyansk station 

Data and resources availability at such rapid time scales of the study meant we were unable to perform 

an analysis of the change in intensity and likelihoods for the station. 

6.2.2 Siberian region 

The best estimate synthesis Probability Ratioincreases by 2050, compared to 2020,  by another 3 to 4 

orders of magnitude, (from about 99,000) to 160 million, although the lower bound of the Probability 

Ratiois less than that for 2020 (see Figure A3, Appendix). Given that the probabilities of occurrence in 

the counterfactual are extremely small the uncertainties are so large, that the exact figures are not very 

reliable What is clear is that the Probability Ratiowill have increased further.  The synthesis change of 

intensity for 2050 is 4.85°C (2.43 to 7.26°C) which is a 30 year increase in best estimates of around 

1.9°C. In other words in 2050 a hot spell with a 1 in 140 return time would be expected to be about 2°C 

warmer. 
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7 Vulnerability and exposure 

Whilst intense heatwaves are amongst the deadliest natural disasters facing humanity today (e.g., 

Harrington and Otto, 2020), prolonged above-average heat episodes can induce long-term 

environmental changes. The frequency and intensity of such heat episodes are on the rise globally, and 

Siberia is a region of the globe warming much faster than the global average. 

 

Geographic Siberia is a sparsely populated but vast region, home to a population of more than 33 million 

people who mostly live in the south but there are also some small settlements north of the Arctic circle, 

such as the town Verkhoyansk (population: slightly over 1100) featured in this study. Economic 

activities around Verkhoyansk are mostly hunting and forestry. However, the area impacted by the heat 

also extends northward to the Arctic coast where the other economic sectors are developed and 

permafrost abounds.  

 

Hot days in Siberia are not uncommon, however the population is not used to extreme heat and may be 

more likely to suffer from common heat-induced problems such as headaches and skin-conditions. 

Combined with other risk factors such as age, respiratory illnesses, cardiovascular disease, other pre-

existing health conditions and socio-economic disadvantages, extreme heat impacts become even more 

acute (Kovats and Hajat 2008, McGregor et al 2015).  

 

The Siberian environment on the other hand, is particularly vulnerable to prolonged above average heat. 

Prolonged heat waves clearly impact the local ecosystems, resulting in e.g. wildfires. These might 

expand over large areas affecting considerable loss of the resources for forestry. Moreover, wildfires 

emit continuous smoke which is rich in  (low level) aerosols affecting air quality and also initiating 

important feedbacks with hot weather which can potentially enhance the temperature locally. 

 

Increasing local temperatures also contribute to the thawing of permafrost covering most of Eastern 

Siberia. This loss of permafrost will be accelerated during heat events. A knock-on effect is the release 

of the greenhouse gas methane and the collapse of infrastructure. In terms of infrastructure, seasonal 

roads and their bearing capacity are affected, as well as buildings and industrial structures. For many 

years, the stability of the local infrastructure relied on the stability of permafrost but as permafrost 

thaws, the stability of the infrastructure is undermined, with critical consequences for many local 

businesses and the well being of the local inhabitants. Damage to infrastructure may also result in 

pollution. 

 

The Russian Federation has recently published a national climate adaptation plan, designed to reduce 

Russiaôs vulnerability to the threat of climate change. Plans are to upgrade the national climate 

monitoring and forecasting systems, conduct assessments of the impacts of climate change and develop 

adaptation strategies. Actions include targeting changes in all design projects on the permafrost. These 

changes account for the melting processes and are applied to all newly developed establishments. 

8 Conclusions  

A large, rapid multi-method attribution study, supported by observational and large ensemble model 

analyses, indicates with high confidence that extremely warm periods such as the 6 months of January 

- June 2020 over the Siberian region would have been at least 2 °C cooler in a world without human 

influence. Similar events have a best estimate return time in the current climate of around 130 years and 

are now more than 600 times as likely to occur as they would have been at the beginning of the 20th 

century; with the best estimate orders of magnitude larger. By 2050 we expect such a regional warm 

period in the first 6 months of the year to be at least another 0.5 °C warmer, and possibly up to 5 °C 

warmer, with similar 6-month regional temperatures becoming correspondingly more frequent. 
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Statements regarding the very high June daily maximum temperatures (38 °C) such as were reported at 

Verkhoyansk can be made only with much lower confidence. Nevertheless, results also indicate a large 

increase in the likelihood of such temperatures and, with more confidence, an increase in extreme daily 

maxima of more than 1 °C when comparing the climate of  1900 to the present day.  

 

 

 

  



23 

References 

 

[global-temperature-2020] 

https://blog.metoffice.gov.uk/2020/06/23/global-temperature-how-does-2020-compare-so-far/ 

 

Ciavarella, A., Christidis, N., Andrews, M., Groenendijk, M., Rostron, J., Elkington, M., Burke, C., 

Lott, F. C., Stott, P. A. (2018). Upgrade of the HadGEM3-A based attribution system to high resolution 

and a new validation framework for probabilistic event attribution. Weather and Climate Extremes, 

Volume 20, https://doi.org/10.1016/j.wace.2018.03.003. 

 

Choi, Y., and Ahn, J. (2019). Possible mechanisms for the coupling between late spring sea surface 

temperature anomalies over tropical Atlantic and East Asian summer monsoon. Clim. Dyn. 53, 6995ï

7009, https://doi.org/10.1007/s00382-019-04970-3. 

 

Deser, C., Lehner, F., Rodgers, K.B. et al. (2020). Insights from Earth system model initial-condition 

large ensembles and future prospects. Nat. Clim. Chang., 10, 277ï286, https://doi.org/10.1038/s41558-

020-0731-2. 

 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). 

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and 

organization. Geoscientific Model Development, 9(5), 1937-1958. 

 

Hansen, J.,  Ruedy, R.,  Sato, M., and  Lo, K. (2010).  Global surface temperature change, Rev. 

Geophys.,  48, RG4004, doi:10.1029/2010RG000345. 

 

Harrington, L.J. and Friederike E. L. Otto, (2020). "Reconciling theory with the reality of African 

heatwaves", Nature Climate Change, https://doi.org/10.1038/s41558-020-0851-8. 

 

Hazeleger, W., Wang, X., Severijns, C., Stefanescu, S., Bintanja, R., Sterl, A., Wyser, K., Semmler, 

T., Yang, S., Van den Hurk, B., et al. (2012). EC-Earth V2. 2: description and validation of a new 

seamless earth system prediction model, Climate dynamics, 39, 2611-2629. 

 

Kovats, S. and Hajat, S. (2008). Heat Stress and Public Health: A Critical Review. Annual Review 

Public Health 29, 41-55 doi: 10.1146/annurev.publhealth.29.020907.090843. 

 

Lehner, F., et al. (2020) "Partitioning climate projection uncertainty with multiple large ensembles and 

CMIP5/6." Earth System Dynamics 11.2: 491-508. 

 

Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, J., 

Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, N., Putrasahan, D., Boysen, L., 

Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B. and Marotzke, J. (2019). The Max 

Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability. Journal of 

Advances in Modeling Earth Systems, 11, 1-21. doi.org/10.1029/2019MS001639. 

 

Mauritsen, T. et al. (2019). Developments in the MPI M Earth System Model version 1.2 (MPI

ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Syst.,11, 998-1038, 

doi:10.1029/2018MS001400. 

 

McGregor, G. R., Bessemoulin, R., Ebi, K., & Menne, B. (Eds.). (2015). Heatwaves and health: 

Guidance on warning-system development (Vol. 1142). Geneva, Switzerland, World Meteorological 

Organization and World Health Organisation. Retrieved from: http://bit.ly/2NbDx4S. 

 

https://blog.metoffice.gov.uk/2020/06/23/global-temperature-how-does-2020-compare-so-far/
https://doi.org/10.1007/s00382-019-04970-3
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1029/2010RG000345
https://doi.org/10.1038/s41558-020-0851-8


24 

Mueller, W.A. et al. (2018). A high resolution version of the Max Planck Institute Earth System 

Model MPI ESM1.2 HR. J. Adv. Model. EarthSyst.,10,1383ï1413, doi:10.1029/2017MS001217. 

 

OôNeill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., . . . Sanderson, 

B. M. (2016, sep). The scenario model intercomparison project (ScenarioMIP) for CMIP6. 

Geoscientiýc Model Development, 9 (9), 3461ï3482. doi: 10.5194/gmd-9-3461-2016. 

 

Taylor, Karl E., Ronald J. Stouffer, and Gerald A. Meehl (2012). An overview of CMIP5 and the 

experiment design. Bulletin of the American Meteorological Society 93.4, 485-498. 

 

Wu, R., and S. Chen (2020). What Leads to Persisting Surface Air Temperature Anomalies from Winter 

to Following Spring over Mid- to High-Latitude Eurasia? J. Clim., 33, 5861ï5883, 

https://doi.org/10.1175/jcli-d-19-0819.1. 

 
 

Appendix 

A1 Validation tables 

Table A1: All models considered for analysis of Verkhoyansk station. For some models the number of 

ensemble members is indicated behind the model name in parentheses.   

Model 
Seasonal 

cycle 
Spatial 

pattern Sigma Shape parameter Conclusion 

MPI-ESM1.2-HR reasonable  
3.388 

(3.219 ... 3.543) 
-0.298 

(-0.358 ... -0.27) bad, sigma too high 

EC-Earth good  
3.012 

(2.882 ... 3.131) 
-0.277 

(-0.305 ... -0.251) bad, sigma too high 

CMIP5-synthesis NA NA 
2.78 

(1.7 ... 4.67) 
-0.28 

(-0.38 ... -0.17) reasonable 

BCC_bcc-csm1-1-m good good 
3.24 

(3.02 ... 3.44) 
-0.24 

(-0.3 ... -0.19) bad 

CCCma_CanESM2 good reasonable 
2.81 

(2.69 ... 2.94) 
-0.26 

(-0.3 ... -0.23) bad 

CMCC_CMCC-

CESM good reasonable 
3.13 

(2.7 ... 3.47) 
-0.38 

(-0.45 ... -0.3) bad 

CMCC_CMCC-CMS good reasonable 
2.81 

(2.55 ... 3.05) 
-0.3 

(-0.42 ... -0.23) reasonable 

CNRM-

CERFACS_CNRM-

CM5 good good 
2.39 

(2.29 ... 2.47) 
-0.22 

(-0.25 ... -0.2) good 

CSIRO-

BOM_ACCESS1-0 good good 
2.52 

(2.3 ... 2.71) 
-0.24 

(-0.3 ... -0.19) good 

CSIRO-

BOM_ACCESS1-3 good good 
2.2 

(2.01 ... 2.37) 
-0.28 

(-0.38 ... -0.22) good 

CSIRO-

QCCCE_CSIRO-

Mk3-6-0 good reasonable 
2.28 

(2.21 ... 2.35) 
-0.24 

(-0.27 ... -0.22) good 

INM_inmcm4 good reasonable 
2.95 

(2.65 ... 3.24) 
-0.32 

(-0.4 ... -0.25) bad 
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IPSL_IPSL-CM5A-LR good good 
1.85 

(1.76 ... 1.94) 
-0.26 

(-0.29 ... -0.23) reasonable 

IPSL_IPSL-CM5A-

MR good good 
1.75 

(1.62 ... 1.87) 
-0.22 

(-0.29 ... -0.17) bad 

IPSL_IPSL-CM5B-LR good good 
1.98 

(1.78 ... 2.17) 
-0.31 

(-0.41 ... -0.24) good 

MIROC_MIROC-

ESM-CHEM good reasonable 
4.5 

(3.82 ... 5.05) 
-0.39 

(-0.52 ... -0.32) bad 

MIROC_MIROC-

ESM good reasonable 
4.58 

(4.14 ... 4.99) 
-0.41 

(-0.55 ... -0.36) bad 

MIROC_MIROC5 good reasonable 
2.75 

(2.63 ... 2.86) 
-0.25 

(-0.29 ... -0.22) bad 

MPI-M_MPI-ESM-LR good good 
3.19 

(3 ... 3.38) 
-0.25 

(-0.32 ... -0.21) bad 

MPI-M_MPI-ESM-MR good good 
3.17 

(2.95 ... 3.38) 
-0.29 

(-0.34 ... -0.25) bad 

MRI_MRI-CGCM3 good good 
2.64 

(2.44 ... 2.82) 
-0.23 

(-0.28 ... -0.18) reasonable 

NASA-GISS_GISS-

E2-H good good 
2.21 

(2.01 ... 2.39) 
-0.2 

(-0.33 ... -0.12) good 

NASA-GISS_GISS-

E2-R good good 
2.13 

(1.93 ... 2.3) 
-0.17 

(-0.24 ... -0.1) good 

NCAR_CCSM4 good good 
3.71 

(3.54 ... 3.9) 
-0.32 

(-0.38 ... -0.3) bad 

NCC_NorESM1-M good good 
3.6 

(3.42 ... 3.8) 
-0.29 

(-0.4 ... -0.26) bad 

NSF-DOE-

NCAR_CESM1-BGC good good 
3.49 

(3.16 ... 3.81) 
-0.32 

(-0.46 ... -0.27) bad 

NSF-DOE-

NCAR_CESM1-

CAM5 good reasonable 
3.05 

(2.8 ... 3.25) 
-0.3 

(-0.36 ... -0.25) bad 

HadGEM3-A good good 
2.67 

(2.55 ... 2.81) 
-0.242 

(-0.32 ... -0.22) reasonable 

ACCESS-CM2 (2) good good 
2.52 

(2.31 ... 2.78) 
-0.3 

(-0.37 ... -0.23) good 

ACCESS-ESM1-5 (3) good good 
2.17 

(2.01 ... 2.35) 
-0.28 

(-0.35 ... -0.21) good 

AWI-CM-1-1-MR (1) good good 
3.52 

(3.11 ... 4.04) 
-0.28 

(-0.38 ... -0.16) reasonable (sigma too large) 

BCC-CSM2-MR (1) good good 
5.48 

(4.84 ... 6.2) 
-0.23 

(-0.31 ... -0.13) bad? (sigma way too large) 

CMCC-CM2-SR5 (1) good good 
2.5 

(2.2 ... 2.87) 
-0.23 

(-0.34 ... -0.11) good 

CNRM-CM6-1 (1) good good 
2.21 

(1.95 ... 2.56) 
-0.26 

(-0.36 ... -0.14) good 

CNRM-CM6-1-HR (1) good good 
2.34 

(2.07 ... 2.69) 
-0.25 

(-0.35 ... -0.13) good 

CNRM-ESM2-1 (1) good good 
2.07 

(1.83 ... 2.39) 
-0.15 

(-0.25 ... -0.03) good 
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CanESM5 (50) good good 
2.87 

(2.82 ... 2.92) 
-0.32 

(-0.33 ... -0.31) reasonable (shape too small) 

EC-Earth3 (3) good good 
4.02 

(3.76 ... 4.33) 
-0.31 

(-0.34 ... -0.28) reasonable (sigma too large) 

EC-Earth3-Veg (4) good good 
3.81 

(3.59 ... 4.08) 
-0.33 

(-0.37 ... -0.3) 
bad (sigma too large; shape too 

small) 

FGOALS-g3 (3) good good 
2.98 

(2.78 ... 3.23) 
-0.29 

(-0.33 ... -0.23) good 

GFDL-CM4 (1) good good 
2.68 

(2.35 ... 3.09) 
-0.25 

(-0.37 ... -0.11) good 

GFDL-ESM4 (1) good good 
2.32 

(2.05 ... 2.65) 
-0.37 

(-0.47 ... -0.25) reasonable (shape too small) 

HadGEM3-GC31-LL 

(4) good good 
2.77 

(2.59 ... 2.96) 
-0.27 

(-0.31 ... -0.22) good 

HadGEM3-GC31-MM 

(3) good good 
2.58 

(2.39 ... 2.79) 
-0.09 

(-0.12 ... -0.05) good 

INM-CM4-8 (1) good good 
2.7 

(2.39 ... 3.09) 
-0.36 

(-0.48 ... -0.24) 
bad (sigma too large; shape too 

small) 

INM-CM5-0 (1) good good 
2.78 

(2.49 ... 3.16) 
-0.36 

(-0.45 ... -0.26) reasonable (shape too small) 

IPSL-CM6A-LR (6) good good 
2.9 

(2.75 ... 3.07) 
-0.25 

(-0.3 ... -0.2) good 

KACE-1-0-G (2) good good 
3.72 

(3.39 ... 4.13) 
-0.1 

(-0.18 ... -0.01) 
bad (somthing wrong with the 

data) 

MIROC-ES2L (1) good good 
2.41 

(2.12 ... 2.74) 
-0.25 

(-0.34 ... -0.14) good 

MIROC6 (50) good good 
2.46 

(2.42 ... 2.51) 
-0.3 

(-0.31 ... -0.29) good 

MPI-ESM1-2-HR (2) good good 
3.32 

(3.03 ... 3.67) 
-0.24 

(-0.3 ... -0.15) reasonable (sigma too large) 

MPI-ESM1-2-LR (10) good good 
3.27 

(3.14 ... 3.42) 
-0.31 

(-0.34 ... -0.28) reasonable (sigma too large) 

MRI-ESM2-0 (2) good good 
2.82 

(2.57 ... 3.12) 
-0.27 

(-0.33 ... -0.19) good 

NESM3 (1) good good 
2.92 

(2.54 ... 3.36) 
-0.18 

(-0.32 ... -0.04) good 

NorESM2-MM (1) good good 
3.05 

(2.71 ... 3.49) 
-0.34 

(-0.44 ... -0.24) 
bad (sigma too large; shape too 

small) 

UKESM1-0-LL (5) good good 
2.89 

(2.74 ... 3.06) 
-0.18 

(-0.2 ... -0.16) good 

 

Table A2: All models considered for analysis of Siberian region. For some models the number of 

ensemble members is indicated behind the model name in parentheses.   

 

Model / 
Observations 

Seasonal 
cycle 

Spatial 
pattern Sigma Conclusion 

ERA5 (1979 - 2020)   
1.036 (0.826 ... 
1.197)  

GISS 250km 
anomalies   

1.077 (0.917 ... 
1.2)  
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MPI-ESM1.2-HR (10) good good 
1.094 (1.017 ... 
1.167) good 

EC-Earth good reasonable 
1.131 (1.074 ... 
1.179) 

reasonable Gaussian fit not good 
near event RP 

CMIP5-synthesis NA NA 1 (0.73 ... 1.34) good 

BCC_bcc-csm1-1-m good good 0.96 (0.9 ... 1.02) good 

BNU_BNU-ESM good reasonable 0.99 (0.91 ... 1.07) good 

CCCma_CanESM2 good reasonable 1.3 (1.25 ... 1.35) bad 

CMCC_CMCC-
CESM good reasonable 1.02 (0.93 ... 1.11) good 

CMCC_CMCC-CMS good reasonable 1.03 (0.94 ... 1.11) good 

CNRM-
CERFACS_CNRM-
CM5 good good 1.06 (1.03 ... 1.09) good 

CSIRO-
BOM_ACCESS1-0 good good 1.15 (1.09 ... 1.22) good 

CSIRO-
BOM_ACCESS1-3 good good 1.01 (0.95 ... 1.07) good 

CSIRO-
QCCCE_CSIRO-
Mk3-6-0 good reasonable 0.69 (0.67 ... 0.71) bad 

FIO_FIO-ESM good reasonable 0.97 (0.92 ... 1.03) good 

INM_inmcm4 good reasonable 1 (0.91 ... 1.08) good 

IPSL_IPSL-CM5A-LR good good 0.84 (0.81 ... 0.87) good 

IPSL_IPSL-CM5A-
MR good good 0.83 (0.78 ... 0.87) good 

IPSL_IPSL-CM5B-LR good good 0.81 (0.75 ... 0.87) reasonable 

MIROC_MIROC-
ESM-CHEM good reasonable 0.91 (0.83 ... 0.99) good 

MIROC_MIROC-
ESM good reasonable 0.97 (0.9 ... 1.03) good 

MIROC_MIROC5 good reasonable 0.94 (0.9 ... 0.97) good 

MPI-M_MPI-ESM-LR good good 1.1 (1.05 ... 1.15) 
good, but excluded because MR-
version gives same results 

MPI-M_MPI-ESM-MR good good 1.08 (1.01 ... 1.14) good 

MRI_MRI-CGCM3 good good 1.16 (1.09 ... 1.23) good 

NASA-GISS_GISS-
E2-H-CC good good 0.9 (0.82 ... 0.96) good 
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NASA-GISS_GISS-
E2-H good good 0.85 (0.81 ... 0.88) good 

NASA-GISS_GISS-
E2-R-CC good good 0.78 (0.7 ... 0.85) reasonable 

NASA-GISS_GISS-
E2-R good good 0.85 (0.82 ... 0.89) good 

NCAR_CCSM4 good good 1.14 (1.1 ... 1.17) good 

NCC_NorESM1-M good good 1.17 (1.1 ... 1.24) good 

NCC_NorESM1-ME good reasonable 1.3 (1.18 ... 1.4) reasonable 

NSF-DOE-
NCAR_CESM1-BGC good good 1.19 (1.09 ... 1.28) good 

NSF-DOE-
NCAR_CESM1-
CAM5 good reasonable 1.31 (1.24 ... 1.37) bad 

HadGEM3-A ALL good good 1.01 (0.96 ... 1.05) good 

ACCESS-CM2 (3) good good 1.33 (1.24 ... 1.43) bad (sigma too high) 

ACCESS-ESM1-5 (3) good good 1.44 (1.34 ... 1.56) bad (sigma too high) 

AWI-CM-1-1-MR (1) good good 1.11 (0.98 ... 1.27) good 

BCC-CSM2-MR (1) good good 1.02 (0.9 ... 1.16) good 

CAMS-CSM1-0 (2) good good 0.8 (0.73 ... 0.88) reasonable (sigma too small) 

CESM2 (5) good good 1.19 (1.12 ... 1.26) good 

CESM2-WACCM (3) good good 1.12 (1.04 ... 1.21) good 

CIESM (1) good good 1.2 (1.06 ... 1.36) good 

CMCC-CM2-SR5 (1) good good 1.02 (0.91 ... 1.16) good 

CNRM-CM6-1 (6) good good 1.26 (1.19 ... 1.32) reasonable (sigma too large) 

CNRM-CM6-1-HR (1) good good 0.99 (0.87 ... 1.13) good 

CNRM-ESM2-1 (5) good good 1.21 (1.15 ... 1.28) reasonable (sigma too large) 

CanESM5 (50) good good 1.19 (1.16 ... 1.21) good 

CanESM5-CanOE (3) good good 1.17 (1.09 ... 1.26) good 

EC-Earth3 (7) good reasonable 1.02 (0.98 ... 1.08) good 
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EC-Earth3-Veg (4) good good 0.95 (0.9 ... 1.02) good 

FGOALS-f3-L (1) good good 1.18 (1.05 ... 1.35) good 

FGOALS-g3 (4) good good 1.07 (1.01 ... 1.15) good 

FIO-ESM-2-0 (3) good good 1.2 (1.12 ... 1.3) good 

GFDL-CM4 (1) good good 0.94 (0.83 ... 1.07) good 

GFDL-ESM4 (1) good good 0.81 (0.72 ... 0.93) good 

GISS-E2-1-G (1) good good 1.25 (1.1 ... 1.43) reasonable (sigma too large) 

HadGEM3-GC31-LL 
(4) good good 0.92 (0.86 ... 0.98) good 

HadGEM3-GC31-MM 
(3) good good 0.95 (0.89 ... 1.03) good 

INM-CM4-8 (1) good good 0.85 (0.75 ... 0.97) good 

INM-CM5-0 (1) good good 0.81 (0.71 ... 0.92) reasonable (sigma too small) 

IPSL-CM6A-LR (6) good good 1.05 (0.99 ... 1.1) good 

KACE-1-0-G (3) good good 1.41 (1.31 ... 1.51) 
bad (something goes wrong with 
Tglob) 

MCM-UA-1-0 (1) good reasonable 1.25 (1.1 ... 1.44) reasonable (sigma too large) 

MIROC-ES2L (1) good reasonable 0.81 (0.72 ... 0.93) reasonable (sigma too small) 

MIROC6 (50) good good 0.9 (0.88 ... 0.92) good 

MPI-ESM1-2-HR (2) good good 1.11 (1.01 ... 1.21) good 

MPI-ESM1-2-LR (10) good good 1.06 (1.02 ... 1.1) good 

MRI-ESM2-0 (2) good reasonable 1.28 (1.17 ... 1.4) reasonable (sigma too large) 

NESM3 (2) good good 1.33 (1.22 ... 1.46) bad (sigma too high) 

NorESM2-LM (1) good good 1.34 (1.18 ... 1.54) reasonable (sigma too high) 

NorESM2-MM (1) good good 1.17 (1.04 ... 1.34) good 

UKESM1-0-LL (5) good good 0.99 (0.94 ... 1.05) good 

MPI-GE (100) good good 1.08 (1.05 ... 1.1) good 
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A2 Full synthesis figures 

A2.1 Verkhoyansk station 

 
Figure A1: Synthesis of probability ratios (left) and changes in intensity (right) from the attribution 

analysis of June TXx at Verkhoyansk station. 
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A2.2 Siberian region 
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