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Abstract
Southern Louisiana is experiencing a dramatic loss of freshwater wetlands as a result of 
natural and man-made changes in the landscape.  Multitempral remotely sensed data were 
used to examine the impact of the Caernarvon Freshwater Diversion Structure, built in 
1991 to divert water to Breton Sound.  Satellite imagery data covering the period from 
1974 to 2006 were analyzed by computing several spectral indices including NDVI, VI, 
IR/R, Sqrt IR/R, T-NDVI, and NDWI, as well as principle component analysis.  The 
resulting enhanced images were classified into two classes, vegetation or open water.  
The ratios of vegetation to open water were then calculated and the changes graphed over 
the 1974-2006 timeframe.  The results indicated that despite the infusion of freshwater, 
the open water portion of the Breton Sound area continued to expand, indeed the 
expansion rate increased from approximately 0.25% per year before construction of 
Caernarvon to 0.45% per year after construction. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Freshwater diversion, wetland, remote sensing, multitempral, spectral 
indices, Caernarvon
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1 Introduction 

Wetlands help regulate river flow, filter pollutants from freshwater, provide spawning 

areas for many commercially valuable species of fish, as well as necessary habitats for 

plants, insects, amphibians and birds.  The Mississippi River wetlands in Louisiana are 

some of the largest and most resource rich wetlands in North America (Figure 1).  In 

spite of the beneficial resources these coastal wetlands provide, they are disappearing at 

an alarming rate of 25 to 35 square miles per year.  This rate of loss is an equivalent of 

the entire area of the state of Rhode Island disappearing every 35 years.  The rate of 

wetland loss in Louisiana is greater than that of any other wetland habitat in the United 

States (Turner, 1997).  Although several researchers have studied coastal wetlands and 

have documented the losses  (Reyes et al. 2002; Morton et al. 2002; Minello and Rozas, 

2002), there is a lack of focus on assessing the effectiveness of strategies to reduce or 

stop wetland loss. 
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Figure 1. False-color Landsat Thematic Mapper (TM) imagery showing the study area (USGS 2002). 

In 1990, the state of Louisiana in cooperation with the Federal Government initiated a 

program to address the issue of coastal wetlands loss in Louisiana.  The Louisiana 

Coastal Wetlands Restoration Plan (LCWRP) also known as the “Breaux Act” in 

recognition of retired Senator John Breaux, the driving force behind the legislation, was 

passed in 1990 (LCWCRTF, 1998).  The Breaux Act has a wide-ranging scope and the 

primary objective is to bring together several agencies both at state and federal levels, to 

focus their combined resources to produce effective and positive change in the 

deteriorating wetland situation.  The LCWRP envisions a multidimensional approach to 
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wetland restoration, including the development of a number of freshwater diversion 

structures to redirect freshwater from the Mississippi River in order to “recharge” the 

wetlands.  The diversion structures are designed to mimic the periodic natural flooding of 

the Mississippi River prior to the construction of the present levee system.  Not only is 

this an ambitious plan, the cost of the diversion structures is over $250 million.  

Considering the enormous costs associated with the construction and implementation of 

such diversion structures – the question needs to be asked – how effective are such 

strategies in restoring wetlands?    

 

One simple method to measure the effectiveness of the diversion structures is to compare 

pre-and post-diversion landscape changes.  Multitemporal satellite imagery can be used 

to quantify how much, if any, wetland restoration has been accomplished by the diversion 

structures.   

 

1.1 History of the Mississippi Delta 

The Mississippi delta has been building for thousands of years.  Major uplift in the Rocky 

Mountains west of the Mississippi River Valley, in addition to the older but still 

substantial Adirondack Mountains to the east, has resulted in a river valley bisecting the 

North American continent.  This natural valley feeds huge volumes of water (612,000 

cfs) and sediment into the Mississippi River, resulting in the building of a substantial 

delta region in the Gulf of Mexico (Robinson, 1995) 
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The main lobes of the Mississippi Delta that are central to this study are those that 

comprise the present wetland region of Louisiana (Figure 2). 

 

 

Figure 2.  Main lobes of the Mississippi River Delta (Campanella 2006). 

 

The development of each delta accompanied the deposition of enough sediment at its 

mouth to raise the elevation there to an unsustainable level.  As the result of increased 

elevation, the river channel changed its course and consequently the delta-building 

process began again.  The current delta morphology is the result of both active delta and 

varied features of several pre-existing Mississippi River deltas. 

 

The Atchafalaya delta, which is a relatively recent landform, is noteworthy because it is 

believed to be the beginning of what may be the natural course of the Mississippi River in 

the centuries ahead (Meade 1995).  Already the Mississippi River has deposited huge 
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amounts of sediment in its present delta (the Balize) and it appears poised to switch 

channels to the Atchafalaya River Basin.  Because of this, the Army Corps of Engineers 

built the Old River Control Structure at a point where the Mississippi River approaches 

the Atchafalaya River.  This structure maintains 70 percent of the Mississippi water flow 

in its present channel, and allows only 30 percent to flow into the Atchafalaya River.  

(Robinson et al. 1995) 

 

1.2 Coastal Wetland Loss 

The Army Corps of Engineers defines wetlands as “…areas that are inundated or 

saturated by surface or ground water at a frequency and duration sufficient to support, 

and that under normal circumstances do support, a prevalence of vegetation typically 

adapted for life in saturated soil conditions.  Wetlands generally include swamps, 

marshes, bogs, and similar areas.” (US Army Corps of Engineers 1995)  Environmental 

Protection Agency (1994) defines wetlands as “An area that is regularly saturated by 

surface water or groundwater and is characterized by a prevalence of vegetation that is 

adapted for life in saturated soil conditions (e.g., swamps, bogs, fens, marshes, and 

estuaries).  The US Geological Survey defines wetlands as “…land areas which are 

seasonally or permanently waterlogged, including lakes, rivers, estuaries, and freshwater 

marshes…(or) low-lying land submerged or inundated periodically by fresh or saline 

water.” (USGS, 1998)  This definition does not mention vegetation.  For the purposes of 

this research, wetlands will be defined as “Any area that is regularly or permanently 

saturated with either fresh or salt water, in which the prevailing vegetation is adapted to 

these conditions.” 
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Wetlands are by nature transitory, in a sense that their sustenance depends on a constant 

supply of water and any interruption in that supply could cause them to shrink or even 

disappear.  The one reason for most coastal wetland loss is saltwater intrusion.  And the 

factors contributing to the intrusion of salt water into the coastal wetlands of Louisiana 

are: 1) Degradation of Barrier islands; 2) Storm surges; 3) Problems associated with oil 

and gas development; 4) Sea level rise; 5) Subsidence; and 6) Levee building.  The role 

of each of these factors is described below: 

1.2.1 Barrier island degradation 

The degradation of Barrier islands exposes coastal wetlands to the direct impact of ocean 

waves and currents.  The Barrier islands consist of sand beaches and vegetated sand 

dunes, and mudflats.  The islands provide protective mechanism for coastal wetlands by 

not only retarding the speed of storm-generated waves but also serving as natural barrier 

to the devastating effects of storm waves. (USGS 2007) 

 

At the present time, the Chandeleur Islands, on the furthermost extent of the St. Bernard 

delta, are experiencing serious degradation.  These islands have been eroding for many 

years and are almost completely extinct.  The total destruction of these islands is likely to 

have serious implications for coastal wetlands in Louisiana (Figure 3). 
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Figure 3. Barrier island degradation, left side pre-Katrina, right side post-Katrina (USGS 2007). 

1.2.2 Storms 

Significant loss of coastal wetlands results from wind and waves associated with major 

storms.  Additionally, tidal surges that often accompany large storms and hurricanes 

cause significant salt-water intrusion into the wetlands.  For instance, storm surges 

associated with Hurricane Katrina in 2005 brought the intrusion of huge volume of salt 

water into the coastal freshwater environment.  This stressed the salt-sensitive vegetation, 

and the physical pressure from high winds downed trees and other plants that helped 

anchor wetland soils.  While relatively rare, the widespread damage they cause make 

storms a powerful force for wetland destruction.  

1.2.3 Problems associated with oil and gas development 

Streams and channels are a natural part of coastal wetlands.  Increased development 

activities associated with oil and gas development projects in coastal Louisiana have 

required the digging of numerous canals and channels in wetland areas.  These canals and 
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transportation channels are generally dug straight and deep, which facilitates more rapid 

intrusion of highly saline gulf water deep into the marsh.  In addition, the spoil piled at 

the banks tends to discourage plant growth, resulting in gradual widening of the canals 

and exacerbation of the saline intrusion (USGS 2007).  Other degradation issues 

associated with oil and gas development include destruction of wetland vegetation due to 

the transportation of drilling rigs, seismic survey vessels, production platforms, drill 

cuttings, and other petroleum extraction equipment and facilities.  All these activities 

exert stress on fragile wetland environment and thus intensify the wetland loss.   

1.2.4 Sea level rise 

Sea level rise is a more recent concern and is potentially one of the more serious 

problems for wetland conservation.  As global warming progresses, it is causing land-

based freshwater ice to melt, which is subsequently raising ocean sea levels.  In addition, 

the thermal expansion of water in the oceans contributes significantly to sea level rise.  

As the sea level rises, salt-water intrusion becomes more severe, barrier islands lose 

much of their protective abilities, and storm surges cause more damage. (Titus 1988) 

1.2.5 Subsidence 

Subsidence is the result of compaction of the underlying delta sediments beneath 

accumulating sediment deposited by the river.  In a natural environment, this subsidence 

is balanced by continual addition of new sediment.  However, when levees are built, 

replenishment stops while compaction and subsidence continue, resulting in flooding and 

eventual permanent loss of wetland vegetation. (USGS 2007) 
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Subsidence further accentuates the problems associated with rising sea levels.  Salt-water 

intrusion, and increased storm surge damage are all amplified. (Environmental Protection 

Agency, 1987) 

1.2.6 Levee building 

Levee building is generally considered to be the single most significant threat to the 

Mississippi Delta region in Louisiana. (Turner, 1997)  Levees were built to prevent 

flooding of important urban and other developed areas within the river flood plain.  The 

levees have generally worked well for flood abatement; however, along with the 

freshwater flow they have also deprived wetlands of sediment.  Instead, the river carried 

and deposited sediment well beyond the delta shelf.     

 

1.3 Modern Remedies 

In the face of the known problems stemming from the loss of delta wetlands, the Army 

Corps of Engineers (ACE) and the State of Louisiana have developed an approach to 

address wetland loss and to come up with a solution.  Coast 2050 is a “strategic plan to 

sustain coastal resources and provide an integrated multiple use approach to ecosystem 

management.”  (Committee on the Future of Coastal Louisiana Report, 2002)  The main 

goal of the plan is to restore wetlands and shorelines and to build sustainable, healthy 

wetlands in the Mississippi delta region.   

1.3.1 Coast 2050 Program 
 
The plan divides the Louisiana coastal wetlands into four regions and outlines a strategy 

for protecting each region.  The proposals contain a wide range of engineering projects, 
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ranging from construction of large and small freshwater diversion structures, drainage 

and natural stream restoration, barrier island and shoreline protection, wave break and 

reef zone construction, lock construction and shipping channel relocation.  The following 

is a short description of the proposed remedies for each region. 

 

Coast 2050 
Regions 

Location Planned construction projects 

Region One Area surrounding 
Lake Pontchartrain 

• Small diversion structures at Blind River 
and the Reserve Relief Canal 

• Natural drainage patterns restored 
• Small diversion structures through the 

Bonnet Carré Spillway, La Branche 
Wetlands and one near Violet  

• Shoreline protection projects for the 
Chandeleur Islands, along Lake 
Pontchartrain, Lake Borgne, the East 
New Orleans Land Bridge and the Biloxi 
Marshes 

• Special problems like the closure or 
modification of the Mississippi River 
Gulf Outlet (MRGO) slated for study 

Region two Breton Sound, 
Barataria Bay and 
Mississippi River 
area 

• Numerous small freshwater diversions  
• Restore natural drainage patterns 
• Small diversions to convey sediment 

constructed at Myrtle Grove, Naomi, 
Bastion Bay, Benny’s Bay, American 
Bay and Quarantine Bay 

• Mississippi River navigation channel 
would be moved  

• Large conveyance channel parallel to 
Bayou Lafourche constructed 

• Wave breaks and reef zones constructed 
across all major bays 

• Fourchon headland and barrier shoreline 
from Sandy Point to Southwest Pass 
reconstructed 

Table 1. Coast 2050 engineering projects. 
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Region three Terrebonne, 
Atchafalaya and 
Teche/Vermilion 
marshes 

• Improve the hydrology in the Verret 
subbasin 

• Maximize land building in Atchafalaya 
Bay 

• Increase influence of the Achafalaya 
River in the Terrebonne marshes  

• Construct conveyance channel parallel to 
Bayou Lafourche 

• Restore Isle Dernieres and the Timbalier 
Islands 

• Restore artificial reef near Point 
Chevreuil 

Region four Westernmost 
Calcasieu, Sabine 
and Merentau areas 

• Improve drainage across Highway 82 
• Constrict the Mermentau River  
• Maintain Atchafalaya River water and 

sediment input 
• Maintain flow from the Sabine River 
• Add lock at Calcasieu Ship Channel 
• Restore long-shore sediment flow across 

Calcasieu Pass and Mermentau Ship 
Channel 

• Prevent the coalescence of Grand and 
White Lakes 

Table 1. Coast 2050 engineering projects (continued). 

 

While all these improvements are costly, it is freshwater diversion that is the most 

expensive and potentially the most productive part of the plan.  For that reason this 

research will concentrate on freshwater diversion as a method of wetland restoration. 

1.3.2 Freshwater Diversion 

The freshwater diversion to wetlands requires a breach in the levee system that allows 

river water into the surrounding wetlands.  The main purpose of the diversion is to restore 

the balance of salinity in wetland areas that are experiencing problems associated with 

saltwater intrusion and to provide sediment flow to areas that are sinking due to 

subsidence and sea level rise (Committee on the Future of Coastal Louisiana 2002).  The 
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freshwater flow into these areas is expected to reinvigorate and enhance the marsh 

vegetation that is going through salinity-induced stress.  The freshwater diversion is also 

expected to increase the commercial and recreational fishing and wildlife productivity in 

the area.  The freshwater diversion essentially replaces the fresh water that used to flow 

into the wetlands before the construction of the levees.  In addition, it has the added 

advantage that it can be regulated to allow the ACE to direct the freshwater into desired 

areas and in desired amounts.  This allows the levees to function in their original role as 

flood control mechanisms as well as providing a means of wetland restoration and 

maintenance. 

 

 

 

Figure 4. Freshwater Diversion Plans for the Mississippi Delta and Estuarine Areas (USACE 2003). 

 

There are three main diversion projects in the Mississippi Delta and Estuarine areas.  One 

is in the planning stages – the Bonnet Carré, and two have been completed – the Davis 
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Pond and Caernarvon diversion structures (Figure 4, Figure 6 and Figure 7).  The 

following is a brief description of each project. 

1.3.3 Bonnet Carré 

The Bonnet Carré Spillway was originally designed as a flood control structure to protect 

the city of New Orleans.  Large sluice gates built into the levee and a spillway leading 

into Lake Pontchartrain allow for quick diversion of flood water into the lake to lower the 

water level in the Mississippi river above New Orleans.  The spillway was built partly in 

response to the Great Flood of 1937, in which parts of the levee were dynamited above 

New Orleans when it was concluded there was a great likelihood the city might be 

flooded.  With the addition of new, controllable sluice gates and outflow channels, the 

diversion structure (Figure 5) will be able to divert freshwater to the wetlands around 

Lake Pontchartrain and the western Mississippi Sound.  With a projected diversion 

capacity of 25,000 cubic feet per second (cfs), the spillway could restore 10,500 acres of 

wetland around Lake Pontchartrain.   An estimated cost of this project is $100 million. 
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Figure 5. Bonnet Carré Diversion Structure Map (USACE 2003). 

1.3.4 Davis Pond 

The Davis Pond Freshwater Diversion Structure (Figure 6), located on the West Bank of 

the Mississippi, was completed in 2002.  It is the larger of the two completed diversion 

structures and has a discharge capacity of 10,650 cfs.  It diverts freshwater into the 

Barataria Bay Estuary, an area south of the main course of the Mississippi River.  At a 

cost of $120 million, it is the most expensive structure to date.  The cost for the Davis 

Pond structure is over four times that of the Caernarvon.  The Davis Pond structure is 

expected to restore 33,000 acres of wetland and benefit 777,000 acres of wetland in 

Barataria Basin.   
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Figure 6. Davis Pond Diversion Structure Map (USACE 2003). 

1.3.5 Caernarvon 

The Caernarvon Freshwater Diversion Structure (Figure 7) has been in operation for over 

16 years.  It is located on the East Bank of the Mississippi River and it empties the 

diverted freshwater into the Breton Sound Basin, a large wetland area on the eastern side 

of the delta, southeast of the city of New Orleans.  The project was completed in 1991 at 

a cost of $26 million and has a diversion capacity of 8,000 cfs.  At the time of its 

implementation, it was expected to restore approximately 16,000 acres of coastal 

wetlands.   
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Figure 7. Caernarvon Diversion Structure Map (Lane 1999). 

The Caernarvon structure is the only structure that has been in operation for several years 

(it opened in 1991), long enough to have provided some record of its impact on the 

wetlands.  It is, therefore, logical to use it as an example for the analysis of the long-term 

effects of freshwater diversion on wetland restoration.  According to the ACE, the 

Caernarvon structure has been a resounding success.  The ACE reported that by 1996 in 

the Breton Sound area, the freshwater marsh has increased seven-fold, and the saline 

marsh has decreased by half.  In addition, the ACE reported that new fresh and brackish 

water habitats have reappeared, oyster production has increased, and there has been a 

corresponding increase in wildlife and fisheries throughout the region.  In addition, 
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estuarine functions have been restored, and ecological niches previously absent have also 

reappeared.  Overall the ACE claims a 17 percent increase in marshland, basing that on a 

net increase of 406 acres of marsh in an area that originally contained 2,289 acres of 

marsh (LaCoast 1998).  

 

While the above numbers may sound impressive, they need to be considered in light of 

the projected wetland loss of 729,000 acres that is expected by the year 2050.  Even if 

every freshwater diversion project is as successful as Caernarvon, they would only 

preserve 12,180 acres (17 percent) of the predicted 729,000 acres of lost wetlands.  This 

in itself is a sobering thought when compared against the cost involved in building, 

implementing, and maintaining those diversion structures.  Other projects, such as 

shoreline restoration or barrier island reinforcement would presumably protect 

significantly smaller percentages of the wetlands. 

 

1.4 Research Questions and Objective 

Previous studies have indicated a significant increase in freshwater marsh vegetation and 

a decrease in brackish marsh vegetation as the result of freshwater diversion projects 

(LaCoast 1998).  Keeping this in mind, the research was designed to address the 

following two questions: i) Can remote sensing technology be used in assessing the 

landcover changes associated with freshwater diversion projects in coastal environments; 

and ii) what remote sensing methods are more effective in assessing the land cover 

changes associated with diversion of freshwater?  The main objective of this study is to 

make an assessment of the impact of freshwater diversion on areas with high quantities of 
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vegetation.  This will be accomplished by determining the per year rate of change in the 

marshland areas, i.e., the loss or gain of wetlands within the study area. 

 

1.5 Research Approach 

The research approach is primarily focused on analyzing the multi-temporal remote 

sensing data to determine how much wetland has been restored since the inception of 

water diversion projects.  Since the diversion structures are designed to target a specific 

area, remote sensing can be used to monitor, assess, and quantify the changes that have 

occurred over time.  By obtaining satellite images over a number of years for the areas in 

question and comparing the pre- and post-diversion wetland extents, it will be possible to 

determine just what changes have occurred in these areas. 

 

It is critical to determine what and how much has been accomplished as the result of 

these water diversion projects because of their considerable expense.  Are these structures 

worth it or not?   How much have they actually accomplished?  Should we continue 

building them, or should we consider alternative methods of restoring and maintaining 

coastal wetlands?   
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2 Literature Review 

This section examines the existing literature as it applies to remote sensing of wetlands, 

and reviews the current thinking on using this technique to measure wetland gain (or 

loss).   

 

2.1 Using remote sensing for wetlands monitoring 

2.1.1 Using MSS for wetland classification 

The basics of remote sensing of wetlands have been known for over twenty years, as 

evidenced by M. Butera (1983).  The author describes the techniques used to delineate 

Roseau cane in the Mississippi River Birdfoot delta region, mangrove forests on the 

southwest Florida coast, and wetlands in the Savannah River floodplain.  The author used 

either LANDSAT data only or a combination of LANDSAT and aircraft Multi-Spectral 

Scanner (MSS) data.  LANDSAT data have the distinct advantage of being available for 

a considerable length of time, as the first LANDSAT was launched in 1972 (originally 

called ERTS for Earth Resources Technology Satellite).  Since that time, seven satellites 

have been built and launched into orbit, except for LANDSAT 6, which was lost at 

launch, and have returned data to provide a complete coverage of the growth or reduction 

in wetland extent.  While the instruments mounted on the satellites have become more 

sophisticated over time, there is still a good continuous baseline record available for 

study.   
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In the Mississippi delta region, Butera (1983) used imagery from the MSS instrument 

aboard LANDSAT as well as an aircraft-mounted RS-18 scanner using the same 

bandwidths as the LANDSAT instrument.  The satellite data, coming as they do from a 

stable platform in a well-known orbit, were the easier of the two to rectify, and as a result 

the author acquired a more accurate computation of the total area of Roseau cane.  

Because of typical problems with pitch and yaw for the aircraft data, in addition to 

continuous changes in side-lap coverage, Butera (1983) could not obtain an accurate 

assessment of total cane area.  However, by comparing a subset of the study area with 

cane extents from aerial photographs, the author obtained consistent results for percent of 

Roseau cane coverage.  Using the same basic technique of combining satellite and 

aircraft-mounted MSS data, Butera (1983) obtained good results for mangrove forest 

extents in the southwest Florida region.  Again the author reports better accuracy from 

the satellite data even though the higher resolution of aircraft data provided more detail, it 

was at the expense of mapping accuracy.  In the Savannah River floodplain, the author 

used only satellite data to measure the extent of the wetland region.  What is unique here 

is the author used data from satellite passes in different seasons (fall and winter) and 

merged the two datasets.  While the author does not specify what atmospheric corrections 

were applied, he was able to obtain good results from the multitemporal data.  The 

author’s classification accuracies were very high (82.6 percent) thus avoiding a problem 

inherent in using aircraft-based data. 

2.1.2 More MSS wetland classification 

Although studying wetland change in an area considerably smaller than the Mississippi 

River delta, E. J. Christensen et al. (1988) achieved good results from aircraft-mounted 
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MSS sensors.  The authors used Daedalus Enterprises model AADS1260 and AADS1268 

instruments, which can sense the same spectral bands found on the MSS sensor aboard 

the LANDSAT satellite.  Because of the limited size of the area under investigation 

(9,000 acres bordering the Savannah River), the larger pixel size of a typical MSS image 

(80 meters) was too large to provide meaningful change data.  The aircraft-mounted 

sensors can provide an image with a 5.6m pixel size.  Unfortunately, unlike satellite 

imagery sensors, aircraft-mounted sensors suffer from excessive movement in three 

dimensions (roll, pitch, and yaw), which are difficult to correct for.  The authors were 

unable to adequately register many of their images and thus were unable to take full 

advantage of the higher resolution that was available.  While higher resolution of aircraft 

data is desirable, the added difficulty in registration effectively increases the special 

resolution and “smears” the data to some degree.  Conversely, the superior stability of 

satellite-mounted sensors usually compensates for their lower resolution, even though the 

resolution of images used was somewhat compromised.  The authors were able classify 

wetland vegetation with an overall accuracy of 84 percent.  The study supported the idea 

that MSS image data can be used to accurately perform wetland classification.  In the 

case of southern Louisiana, which is a much larger study area than that of the Savannah 

River site (approximately 77,000 acres), the limited resolution of MSS image data will 

not be a problem as it was for the researchers at the Savannah River site. 

2.1.3 Wetland monitoring with AVHRR data 

Using a sensor with a significantly lower pixel resolution (1.1 km), Ferguson et al. (2006) 

demonstrated the utility of Advanced Very High Resolution (AVHRR) data for 

delineating land-water interface changes.  Although AVHRR is intended primarily for 
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weather monitoring, the authors used wavelength bands centered at 580-680 nm (visible 

IR), and 725-1000 nm (NIR) to calculate a NDVI that could be used to differentiate the 

land-water interface.  The main difficulty encountered by the researchers was an accurate 

registration of their images.  They accomplished this by first developing a reference map 

of the land-sea boundary.  Using this reference map, they were able to obtain image 

registration with a mean residual error (MRE) of less than one pixel.  Once the images 

were registered, they could determine variations in the land-sea interface over time.  

Because of the coarse resolution of the AVHRR sensor, the smallest estuarine areas the 

authors could accurately track were those that were greater than or equal to 3.3 km in 

width.  In the case of the Mississippi delta area, which is approximately 60-100 km wide, 

this resolution drawback would not be detrimental to tracking wetland changes. 

2.1.4 Combining MSS and TM data 

Measuring wetland change using a method similar to that employed in this study, 

Munyati (2000) examined wetland changes in the Kafue Flats area over a ten-year time 

frame using a combination of Landsat Multi-Spectral Scanner (MSS) and Thematic 

Mapper (TM) images.  The images were from 1984, 1988, 1991, and 1994, and all were 

taken over a three-week period in September.  This minimized seasonal variations in 

vegetation growth as well as sun angle and other physical system variables.  It did 

however involve a comparison of images with dramatically different pixel sizes, 80 

meters for the 1984 and 1988 MSS images and 30 meters for the 1991 and 1994 TM 

images. Though this limited the resolution of the changes that could be detected, the large 

area under study (approx 60x100 km) ameliorated that issue to some extent.  Munyati 

(2000) achieved a good quality separation between open water and most of the vegetation 
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recorded in his images.  His most difficult task was to separate burnt or muddy areas of 

black soot or wet clay.  He categorized the contents of his images as follows: 

 

1. open water  

2. dense vegetation 

3. sparse vegetation 

4. very sparse vegetation  

5. dry grassland, woodland, and exposed soil 

6. burnt or muddy areas 

 

This categorization allowed him to detect significant variations in the wetland within the 

study area, and he was able to tie the temporal changes to temporal variations in the 

discharge rates of the irrigation dam situated upstream of Kafue Flats.   

 

2.2 Spectral indices relevant to remote sensing of wetlands 

2.2.1 Normalized Difference Vegetation Index (NDVI) for ecosystem monitoring 

Large-scale monitoring of ecosystems is a critical requirement if progress is to be made 

in determining human impact on the environment.  D. M. Stoms et al. (2000) have 

evaluated a predictive model using Regression Tree Analysis (RTA) to calculate land use 

patterns in ecoregions in California, Oregon, and Washington.  They compiled a set of 

variables based on precipitation, temperature, and soil characteristics.  Using a network 

of nature reserves for training data, they predicted land use characteristics based on the 

NDVI for the entire ecoregion and compared those results to their present land use 
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categories.  When the predicted NDVI map was subtracted from the actual NDVI map, 

they were left with a difference map.  Their results were surprisingly accurate, given they 

were using a limited number of variables and were examining quite large areas.  

Regressive Tree Analysis accounted for 79 percent of the deviance in predicted NDVI for 

the training data.  Most of the error occurred in urban or agricultural areas.  This was 

expected, as urban areas generally lack significant vegetation and agricultural areas in the 

large Eastern Washington and Central California regions are generally irrigated, 

differentiating them from natural areas.   

 

The drawback to this model was that it was developed using NDVI composites from a 

single year.  These can vary widely from year to year, and it is this author’s belief that 

composites from multiple years would yield more accurate results.  But in general, the 

RTA model was moderately accurate in predicting land use classes from a minimal 

variable dataset.  While the scale of this project was huge, encompassing three western 

states, it still has the potential to aid in the prediction of land-use classes in wetland areas 

in Southern Louisiana.  Using regression analysis to predict the potential land use class 

for the areas affected by freshwater diversion could be useful in comparing the predicted 

class of the studied area with the actual class as observed in the field.  Being able to 

predict what the land use class should be would be very valuable in seeing how close the 

restored areas have come to achieving the goal of returning the wetlands to a more 

natural state.   
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2.2.2 Vegetation Index (VI) performance 

Baugh and Groeneveld (2006) undertook an exhaustive study of Vegetation Indices  (VI), 

by comparing the results of fourteen published VIs for accuracy in a sparsely vegetated 

area in San Luis Valley in Colorado, USA.  The fourteen VIs, in order of their relative 

performance, were: 

 

1. Stretched Normalized Difference Vegetation Index (NDVI*) 

2. Offset NDVI (NDVIOffset) 

3. Transformed SAVI (TSAVI) 

4. Modified Soil Adjusted Vegetation Index (MSAVI) 

5. second MSAVI (MSAVI2) 

6. Difference Vegetation Index (DVI) 

7. Soil Adjusted Vegetation Index (SAVI) 

8. Ratio Vegetation Index (RVI) 

9. Enhanced Vegetation Index (EVI) 

10. Normalized Difference Vegetation Index (NDVI) 

11. Infrared Percentage Vegetation Index (IPVI) 

12. Perpendicular Vegetation Index (PVI) 

13. Atmospherically Resistant Vegetation Index (ARVI) 

14. Weighted Difference Vegetation Index (WDVI) 

 

Using Landsat TM images spanning a 17-year period (1986-2002), the authors compared 

images against the known effects of precipitation in the San Luis Valley, and checked 
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their performance by using the r2 value of the linear regression of each index.  Their 

results showed a surprisingly low score for the standard NDVI, a widely used index and 

one used in this paper as well.  But the area used in their research was a dry, sparsely 

vegetated environment, chosen because of an established relationship of vegetation with 

precipitation, and not at all similar to a wetland.  Both of the indices that scored well, 

NDVI* and NDVIOffset, are modifications of the standard NDVI designed specifically for 

an arid environment.  Nonetheless, the authors concluded the low accuracy of the 

standard NDVI was most likely related to atmospheric effects, which is of serious 

concern when working with multi-temporal datasets.  Accurate atmospheric correction is 

essential to any study using multitemporal images. 

2.2.3 TM spectral indices model 

Landsat Thematic Mapper (TM) images are probably the most utilized remote sensing 

product for wetland research today, due to their ready availability and long temporal 

baseline.  Unfortunately, TM was not originally intended for water study but for 

terrestrial research, such as forestry and agriculture.  When used in wetland applications, 

TM images can often return ambiguous results.  A.S. Rogers et al. (2004) realized this 

and designed a method for analyzing TM wetland images using a simple but innovative 

spectral mixture model.  The authors picked out three normalized spectral indices and 

examined them using a normalized difference transformation (NDX).  The three indices 

were: 

 

1. Normalized Difference Water Index (NDWI): (band 3 – band 5)/(band 3 + band 

5); 
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2. Normalized Difference Vegetation Index (NDVI): (band 4 – band 3)/(band 4 + 

band 3); 

3. Normalized Difference Soil Index (NDSI): (band 5 – band 4)/(band 5 + band 4). 

 

By mapping these indices in three-dimensional space, they were able to differentiate the 

three major components comprising a wetland (soil, water, and vegetation) and map their 

changes over time.  While this method was not error-free, it returned consistently reliable 

results. 

2.2.4 Three techniques for TM analysis 

Using remote sensing to measure change in a tropical forest is now a routine practice.  

Hayes et al. (2001) examined three techniques used in change detection analysis.  

Utilizing three dates of Landsat Thematic Mapper (TM) imagery, the authors applied 

normalized difference vegetation index (NDVI) image differencing, principle component 

analysis (PCA), and RGB-NDVI change detection analysis.  In this way they could 

examine the three techniques to see which one gave the best results.  Overall they found 

the highest accuracy from using RGB-NDVI change detection – 85 percent.  The two 

others, NDVI and PCA, yielded accuracy rates of 82 percent and 74 percent, respectively.  

In addition, the RGB-NDVI technique was the simplest and easiest to interpret.  While 

their research focused on tropical forests, their results still would have important 

implications for change detection in wetland areas.  All three techniques are easily 

performed using software readily available in the lab, and it is possible that a technique 

other than the RGB-NDVI image differencing may return more accurate results.  
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However, overall accuracy and ease of use will determine which one is most useful in 

wetland change detection.   

 

2.3 Chemistry and Salinity mapping 

2.3.1 Mapping salinity 

When studying freshwater diversion for wetland restoration, the ability to track salinity 

changes is of utmost importance.  Glavao et al. (2003) used Airborne Visible/Infrared 

Imaging Spectrometer (ARIVIS) images to determine salinity levels in seven freshwater 

and five saltwater lakes in the Pantanal wetlands of southwestern Brazil.  Using principal 

component analysis, they were able to differentiate freshwater from saltwater lakes by 

using the higher reflectivity of the saline lakes in the 400-900 nm band range, according 

to the first principle component.  The second principal component allowed them to 

measure decreases in chlorophyll and increases in dissolved organic carbon, as indicated 

by areas of the saline lakes that graded from a greenish to bluish color.    

 

The use of hyperspectral data was essential to this study.  It allowed the researchers to 

more accurately characterize the variation in reflectance and also to track changes in 

other absorption bands that mirrored changes in water constituents.  Hyperspectral data 

can be very useful in evaluating salinity levels in areas affected by freshwater diversion 

in the Mississippi delta. 
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2.3.2 Mapping salinity through vegetation changes 

Wetland loss is often directly related to changes in salinity levels.  Any remote sensing 

methodology that would allow for the determination of salinity could be very valuable.  

Using remote sensing data, an indirect method to determine salinity would be to map 

vegetation types that are known to be restricted to specific salinity levels.  J. M. Visser et 

al. (2000) compiled a map of species ranges in the Chenier Plain of southwestern 

Louisiana that also incorporates data on salinity ranges.  These mapped vegetation types 

were used to delineate five distinct salinity zones, following Odum et al. (1984): 

 

• Fresh  (average annual salinity < 0.5 ppt) 

• Oligohaline (average annual salinity between 0.5 ppt and 5.0 ppt) 

• Mesohaline (average annual salinity between 5.0 ppt and 18.0 ppt) 

• Polyhaline (average annual salinity between 18.0 ppt and 30.0 ppt) 

• Euhaline (average annual salinity > 30.0 ppt). 

 

They also mapped seven specific vegetation types in the region: 

 

•  Freshwater bulltongue 

•  Freshwater maidencane 

•  Oligohaline bullwhip 

•  Oligohaline paspalum 

•  Oligohaline wiregrass 

•  Mesohaline wiregrass 
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•  Mesohaline mixture.     

 

Visser et al. (2000) incorporated a direct method to determine vegetation type.  Using a 

helicopter, they flew 75 north-south transects approximately 3 km apart.  The transects 

extended from the Gulf of Mexico to the upland boundary of the coastal zone.  While the 

helicopter hovered over a series of stations located every 0.8 km apart, the researchers 

would visually survey the surrounding vegetation in an approximate 30m radius.  Such 

rigorous examination of the vegetation provided them with a very high confidence in the 

accuracy of their identifications.  The authors used this method to map specific wetland 

plant species and compared their results to previous surveys of Louisiana wetlands, 

including one as old as 1949.  The 1949 study surveyed muskrat habitats (O’Neil, 1949) 

for the Louisiana Wildlife and Fisheries Commission.  Visser et al. (2000) matched 

O’Neil’s muskrat habitat maps with known muskrat habitat ranges, allowing them to 

create a vegetation map that could be corroborated with their own research.  Using this 

technique they were able to map the pattern of wetland loss as well as the associated 

changes in salinity levels in southwestern Louisiana.  Visser et al. (2000) also observed 

that wetland plant species found in the southwestern Chenier Plain area of Louisiana 

were also found in the more easterly Mississippi River Deltaic Plains (and thus could be 

useful as markers for wetland salinity there as well).  Since one of the chief consequences 

of diverting large amounts of river water through the existing and proposed freshwater 

diversion structures will be to lower salinity levels in large areas of the wetlands, the 

ability to determine the extent of these “marker” species could prove valuable.  If 

30 



 

different species can be delineated using satellite remote sensing, it will provide a 

powerful tool in the analysis of wetland salinity levels.   

2.3.3 Diverted water chemistry 

Diverting freshwater into a river-isolated wetland area dramatically alters the water 

chemistry at the point of the diversion.  R. Lane et al. (1999) examined the effect the 

Caernarvon Freshwater Diversion Structure has had on the water chemistry of the Breton 

Sound Estuary, the area directly downstream from the diversion structure and the area 

designated for restoration.  (While wetland restoration is of principal concern today, it 

should be noted that Lane cites Chatry et al. (1983) to the effect that the original goal of 

the Caernarvon structure was to reduce salinities in order to enhance oyster production in 

the area.  Indeed when one reads the present justification for the project on the Corps of 

Engineers (COE) website dated March, 1998  

(http://www.mvn.usace.army.mil/prj/caernarvon/caernarvon.htm), oyster production is 

the first item mentioned as a reason for its construction.) 

 

From 1988 to 1994, Lane et al. collected and analyzed water samples from Breton Sound 

Estuary.  They measured nitrite + nitrate (NO2 + NO3), ammonium (NH4), total Kjeldahl 

nitrogen (TKN), total phosphorus (TP), total suspended sediments (TSS), dissolved 

oxygen (DO), and salinity.  These data were taken from seven monitoring stations 

distributed over the study area.  In addition to the samples they collected and analyzed, 

they incorporated both Army Corps of Engineers (ACE) and Louisiana Department of 

Environmental Quality (LDEQ) data from 1988 to 1994.  In the three years after the 

diversion structure was opened (1991-1994), Lane et al.’s research revealed that the 
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nutrient and sediment levels were unchanged at any of the monitoring stations.  Elevated 

nitrate, phosphate, sediment and dissolved oxygen (NO2 + NO3, NH4, TKN, TP, TSS and 

DO) levels in the Mississippi River quickly reverted to background levels before the 

diverted water reaching the first monitoring station (< 5 km).  Only salinity levels 

changed, and those reverted to background levels as well within 10 km of the diversion 

structure.  These results indicate that present freshwater diversion volumes are having 

minimal effect, and larger volumes could be safely diverted.  If the object of freshwater 

diversion is to build marshland, more river water is needed.  However, if the main reason 

for the structure is to enhance oyster production, the amount of water that could be 

diverted is limited.  Too much freshwater would disrupt oyster production, basically 

pushing it downstream as the salinity levels change.  Overall oyster production may not 

be affected, but the present system of bed leasing would have to be modified. 

 

2.4 Multi-temporal studies 

2.4.1 Multi-temporal images from multiple sensors 

Millward et al. (2006) used normalized multitemporal satellite imagery from three 

different platforms (Landsat TM, Landsat ETM Plus and SPOT 2) for assessing land 

cover change-detection in the coastal zone near Sanya in the Province of Hainan, China.  

They used brightness, greenness, and the NDVI index as input to principle component 

analysis (PCA).  The use of PCA allowed the authors to reduce the bias caused by 

differences in the sensors.  As the objective of this study was to map changes in urban 

development, efforts were made to eliminate spectral input from the ocean.  When the 

analysis was run using masking of the radiation contribution from the water, the results 
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were superior to those obtained when masking wasn’t used.  For vegetation, use of the 

NIR wavelength as input to the PCA provided a better contrast (and thus better 

discrimination) than using the NDVI.  Though this was contrary to the author’s 

expectations, in this case the NIR analysis afforded better results.  (While the authors did 

not speculate why, it may be a consequence of the slightly different wavelength bands 

used by the different sensors, since the SPOT sensors use a slightly narrower band than 

those for the TM and ETM+).  At any rate, the analysis allowed the authors to track 

changes in vegetation over the ten year time frame covered by the images. 

2.4.2 Multi-temporal analysis with a spectral library 

In Spain, as in the rest of the world, the disappearance of wetlands is of serious concern.  

In the La Mancha Alta region in central Spain, T. Schmid et al. (2004) measured the 

spectral radiance of various soils using an ASD FieldSpec Pro VNIR-SWIR 

spectroradiometer.  Then they created a spectral library of the radiances for the various 

land use types of this semi-arid wetland region.  Using this spectral library, they 

examined one set of hyperspectral airborne data from the DIAS 7915 sensor from 29 June 

2000 and two sets of Landsat multispectral data – the ETM+ images from 28 June 2000 

and TM images from 17 June 1987.  These three image sets provided them with a 13-year 

image coverage in which to analyze changes in the Spanish wetlands.  Using the spectral 

library, they were able to identify the same soil types in all three images.  Numerous 

changes were noted in the images – in some areas the wetlands shrunk and in others they 

expanded, but overall the wetlands shrunk by 28.5 percent.  T. Schmid et al (2004) 

suggested the wetland reductions were most likely due to channeling of the Cigüela River 

(a major river in the area) as well as a dam used for flood control. 
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2.4.3 Single and multi-temporal analysis compared 

Although utilizing satellite images from two different dates often introduces technical 

problems (cloud cover changes, sunlight angle differences, changes in atmospheric 

transmissivity, etc), Lunetta et al. (1999) demonstrated significant benefits when using 

this technique for wetland identification.  The authors compared the accuracies obtained 

from a single Landsat 5 image of the Millington, Maryland-Delaware USGS 7.5-min. 

quadrangle and found a significant improvement when using multi-temporal data.  The 

best accuracy obtainable with the single-date image was 75 percent, while using multiple 

dates raised that accuracy to 83 percent.  In this case, most of the increase in accuracy 

was due to the inability to identify agricultural areas in the single image, in fact no 

agricultural areas were identified at all.  In contrast, the multi-temporal images improved 

the identification of agricultural areas to 75 percent.  Lunetta et al (1999) clearly 

demonstrated that multi-temporal image analysis is a powerful tool in increasing the 

accuracy of overall landcover identification.   

 

2.5 Atmospheric correction 

2.5.1 Correcting atmospheric effects 

Atmospheric interference is the most prevalent component of the difference in magnitude 

between ground radiance and at-sensor radiance.  While the causes of this error are well 

known, it is still one of the most difficult to quantify because the atmosphere can be 

extremely variable.  While atmospheric interference can often be measured at the time of 

data acquisition, it is much more difficult to resolve when analyzing time-variant images.  

C. Song et al. (2001) extensively examined this issue and concluded that while it is 
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difficult to establish the exact surface radiance from historical images, it is often 

unnecessary if the desired result is merely to measure change over time.  While there 

have been numerous methods devised to try to normalize satellite images to obtain true 

reflectance, the authors found that the simpler methods tend to do as well or better than 

the more advanced methods.  The most straightforward method is Dark Object 

Subtraction (DOS), in which the reflectance values of images that are known to be dark 

in certain wavelengths (deep water, asphalt, etc.) are taken as a measure of the 

atmospheric interference.  Subtracting this reflectance value from the entire image works 

as a simple method of atmospheric correction.  Though there are a number of variations 

of DOS, taking into account atmospheric transmission loss and sun zenith angle, the basic 

methodology does not vary.  Another method, the Dense Dark Vegetation (DDV) 

approach, uses vegetation that appears dark in the blue (TM 1) or red (TM 2) channels. 

The Path Radiance (PARA) approach is based on the linear correlation of the visible and 

mid-IR bands at the top of the atmosphere and the ground surface.  The Ridge Method 

depends on the identification of Pseudo-Invariant Features (PIFs) and calculating the 

relationship between image bands over time.  Despite the complexity of these three 

methods, C. Song et al. (2001) showed that none of them return results as accurate as the 

simpler DOS methods.  Additionally, though the determination of true radiance is 

valuable, it is not necessary if one uses training data from the examined images.  Only 

when one attempts to use training data from one time or place and tries to apply them to 

images taken in another time and place will errors result.  As long as the training data for 

a class are included in the examined image, atmospheric correction is unnecessary and 

both land-use classification and change detection are possible.  When it is compulsory to 
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use training and image data from two different physical or temporal locations, then 

atmospheric correction is vital, and C. Song et al. (2001) have demonstrated that simpler 

is better in such cases. 

2.5.2 Atmospheric correction over turbid water 

Atmospheric correction of remotely sensed images is a standard procedure in the 

quantification of water-leaving radiance.  Atmospheric correction is especially difficult 

when dealing with turbid waters because suspended sediments, bubbles, and bottom 

reflection, for example, can contribute significant radiance to the atmospheric correction 

bands – 0.765 μm and 0.865 μm.  This can result in obtaining erroneous correction values 

and even negative water-leaving radiance values.  In addition, chlorophyll concentration 

estimates suffer as well.  C. Hu et al. (2000) developed a technique to reduce the errors 

inherent in turbid water correction values in SeaWiFS (Sea-viewing Wide Field-of-view 

Sensor) imagery, and obtained good results when they applied their method to Louisiana 

coastal environments as well as shallow areas around the Florida Keys.  Their method 

was refreshingly straightforward.  If the atmospheric correction values obtained from 

pixels containing turbid water were bad or suspect, the researchers would simply 

substitute correction values from the “nearest neighbor” pixel.  In an earlier study, 

Gordon and Morel, (1983) demonstrated that aerosol types do not change over moderate 

spatial scales (100-1,000 km), so incorporating the atmospheric correction values from a 

nearby pixel is a practical alternative.  Though this method involved significant changes 

in post-processing of the data, no additional data needed to be collected.  The older 

method of calculating atmospheric correction simply assigned an atmospheric correction 

from a lookup table that was based on twelve aerosol models (maritime, coastal, 
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troposphere, and oceanic aerosols, each of which were assigned various relative 

humidities).  The values of the lookup table were calculated with the assumption that 

reflectance values for water at 0.765 μm and 0.865 μm are equal to zero.  While this 

method work well for most marine images, as mentioned previously, turbid water images 

suffer from increased radiance in the 0.765 μm and 0.865 μm bands.  Subsequently, 

lookup tables can lead to overestimates of aerosol values and even “atmospheric 

correction failure” in some areas of an image.  In addition, this method overestimates 

chlorophyll concentrations as well.  Since the “nearest neighbor” method has provided 

excellent results in the interpretation of images depicting turbid water conditions, it 

should be quite useful when applied to remotely sensed images of Louisiana wetlands, as 

many of those images will depict turbid water environments.  Since freshwater diversion 

introduces large quantities of sediment into the study area, any method that improves the 

accuracy of water-leaving radiation values can only help improve the accuracy of 

vegetation classification, land-water boundary delineations, and the identification of 

tangential wetland characteristics.   

2.5.3 TM data correction  

One of the chief difficulties in working with ocean data is that water-leaving radiance 

values are quite low, especially in coastal areas.  For TM data in the coastal areas of 

south Florida, M. Zhang et al. (1999) developed a noise reduction technique utilizing a 

two-dimensional Fourier transform to remove noise, especially banding caused by 

“bright-target recovery” (Barker, 1985).  This banding is especially common in areas 

with sharp transitions between low and high reflectance areas, for example a cloud-

covered ocean area.  Their techniques reduced noise levels by 23-25 percent in cloudy 
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areas.  In addition, they adapted a method that is commonly used on Coastal Zone Color 

Scanner (CZCS) imagery to perform atmospheric correction.  Marine-type aerosol 

effects, as well as Rayleigh scattering values were computed for each pixel of the TM 

image and removed from the entire scene.  These corrected pixel values were then 

compared with typical clear-water values for the open ocean and were shown to be a 

good match.  Finally, the researchers showcase a method to derive the vegetation 

fractional coverage for each pixel in shallow water areas.  After correcting the digital 

values of each pixel for atmospheric effects, water path radiance, and attenuation, they 

were able to derive the vegetation fractional coverage and estimate total vegetation 

coverage.  This method could be especially useful in examining vegetation coverage 

changes in shallow water deltaic environments.   

 

2.6 Other relevant remote sensing articles 

2.6.1 Monitoring ESA 

J. Slater and R. Brown (2000) developed a GIS-based Map Updating System to track land 

cover changes in “The Broads,” a wetland area on the coast of eastern England.  An 

“Environmentally Sensitive Area” (ESA), it contains important habitats for over-

wintering and nesting birds, and encloses several National Nature Reserves and “Sites of 

Special Scientific Interest.”  The authors used satellite imagery (specifically LANDSAT 

Thematic Mapper (TM) data) to update a digitized 1987 land cover map, which 

subsequently allowed them to monitor land cover changes.  In addition, they used visual 

interpretation of aerial photographs (no specific system described) to further refine their 

updates.  The incorporation of the GIS program into their studies facilitated their map 
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modifications and allowed them to rigorously track changing land use trends.  Due to the 

high cost of aerial photography and the difficulty of obtaining cloud-free satellite images, 

they also used radar imagery from the European Space Agency (ERS) Synthetic Aperture 

Radar (SAR) ERS-1 SAR satellite.  This permitted them to collect all-weather data in an 

area not known for its clear skies.  While the radar imagery was somewhat more difficult 

to interpret than aerial photography or TM data, over time they were able to identify land 

cover changes with almost the same accuracy as the more traditional methods.  In 

addition to the above methods, the authors also obtained MSS data from as early as 1972.  

While of a lower resolution and containing irresolvable cloud cover issues, it gave them a 

25-year baseline with which to track changes.  Despite their labor-intensive visual 

interpretation methods, the authors were able to accurately track land use changes within 

their study area because of the area’s relatively limited size (43,000 hectares).   

2.6.2 Shallow water feasibility study 

D. Durand et al. (2000) looked into various methods of correcting remote sensing images 

in order to accurately estimate reflectance values.  They accomplished this by developing 

various reflective models that were mostly modifications of ocean models optimized for 

shallow water.  They then conducted a sensitivity analysis to see if the models could 

handle a variety of atmospheric conditions and still return sound results.  The results they 

obtained were very good and showed that even with significant introduced errors, the 

models could return reasonable values.  This was good news for the authors, as it 

indicated their models were robust enough to provide the user with confidence the 

models themselves weren’t generating false values, even if the user encountered 

unexpected results.  Despite the success of these models, they were developed for and 
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tested on shallow water environments and in mostly clear water, a condition unlikely to 

be encountered in the Mississippi delta wetland region.  Nonetheless, it is hoped that 

some modifications can be made to these models to adapt them to turbid water conditions 

and saline waters, thus allowing for the accurate assessment of reflectance values in these 

environments. 

2.6.3 Leaf optical property changes 

E. Ramsey III, and A. Rangoonwala (2005) predicted marsh dieback in southern 

Louisiana (the Bayou Du Large) using remote sensing of leaf optical property changes as 

they apply to marsh dieback onset and progression (brown marsh).  Along transects of 

brown marsh, they collected leaf reflectivity measurements in multiple wavelengths.  

They compared the blue (454-459 nm) and red (670-675 nm) reflectivity as well as two 

ratios of the wavelengths NIR (770-780 nm) to red.  They also compared the green (545-

550 nm) to red to visible marsh health determinations.  These comparisons showed that 

while the blue and red wavelengths, as well as the NIR to red (NIRRED) ratios generally 

compared well with maps of visibly determined marsh dieback, they were of limited use 

in predicting dieback.  Instead, it was the green to red (GRNRED) ratio that proved most 

useful as it allowed the authors to map marsh areas that would suffer dieback in the 

future, areas that under visual interpretation did not show any indication of future change.  

This study strongly suggests the green and red wavelength ratio is important as a 

predictor of future marsh dieback.  Furthermore, the green and red wavelength ratio is 

available in most satellite imagery, including the Landsat TM imagery. 
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2.6.4 Dieback-created canopy reflectance changes 

In a follow-up to the research described in section 2.6.3 above, E. Ramsey III, and A. 

Rangoonwala (2006) continued their research on reflectance changes that result from 

marsh dieback.  They compared data derived to simulate a whole-spectral sensor, similar 

to the NASA Earth Observing-1 (EO-1) Hyperion satellite sensor, and broadband spectra 

similar to that available from the Landsat Enhanced Thematic Mapper (ETM).  In 

addition to examining the discrete blue (454-459 nm), green (545-550 nm), red (670-675 

nm), long-wavelength red (695-705 nm), and NIR (845-850 nm), the authors used band 

ratios of NIR/red and NIR/green.  Ramsey and Rangoonwala (2006) demonstrated that 

while the broadband ETM spectral band ratios like NIR/green were able to differentiate 

healthy from stressed marsh in broad regions, the whole-spectra sensor allowed for a 

more accurate discrimination of dieback severity as well as its progression.  While ETM 

spectral resolution was still useful, the whole-spectral bandwidth of the EO-1 

significantly enhanced their resolution in wetland health discrimination. 

2.6.5 Enhancing TM imagery  

Monsef et al. (2000) applied Principle Component Analysis (PCA) to satellite images in 

conjunction with state’s Forest Industry Analysis System (FIAS) to analyze wetland 

landcover. The authors achieved a significant increase in the accuracy of wetland 

classification.  Not only were they able to more accurately classify the wetlands; they 

also significantly augmented their ability to discriminate between different types of 

wetlands.  The relatively straightforward techniques of Monsef et al. (2000) could be 

very useful to quantify changes resulting from diversion of freshwater into the dwindling 

wetlands surrounding the Mississippi River in Louisiana.   
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2.6.6 Landcover classification methods 

The determination of landcover classes is essential to the measurement of wetland 

change.  However, assigning the correct land cover classification is often one of the most 

difficult aspects of remote sensing in wetland areas because classes can be spectrally 

inseparable, and resolution can put further limitations on landclass distinction.  Ramsey et 

al. (2001) examined these issues in the Mermentau River Basin within the Chenier Plain 

of coastal southwest Louisiana.  Using Landsat TM images from 1990 to 1996, along 

with collateral data, the authors determined landcover classes and measured their change 

over the six-year period.  The methods they used to tease out subtle differences between 

classes would be invaluable in the determination of changes resulting from freshwater 

diversion into the lower Mississippi delta.  They used three techniques to overcome 

classification problems.  First, they separated the working area into seven broad 

subregions, each containing several related land cover types, such as forested uplands, 

cultivated uplands, and emergent wetlands.  Then they evaluated each region according to 

its specific characteristics in order to avoid comparing disparate regions that might 

otherwise appear spectrally inseparable.  Second, they applied masks to specific land 

mixtures, such as urban areas.  This permitted them to avoid the comparison of spectrally 

similar areas like barren ground and developed urban areas.  Third, they eliminated class 

changes that were highly unlikely, such as those between upland and wetland forests.  

Using these techniques, either individually or in combination, the authors obtained 

classification accuracies of 80 percent, 78 percent, and 86 percent for their 1990, 1993, 

and 1996 TM images, respectively.   
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In addition, they reported the majority of their classification errors were a result of 

confusion between the following land cover class types: 

 

1. Cultivated land and unmanaged grasslands 

2. Scrub shrub, grasslands, and forest 

3. Water, unconsolidated shore, and bare land 

4. Water and floating vegetation 

2.6.7 Landcover modeling 

Ground truth and knowing the subject of one’s images is imperative to the accuracy of 

any assessment of wetland land cover types.  In a restored wetland area in Southern 

California (Sweetwater Marsh, San Diego County, California), Phinn et al. (1999) 

developed empirical models from data gathered using a multispectral aerial digital 

camera and handheld radiometers.  Examining data that span 1992 to 1996, they learned 

they could increase the accuracy of their land cover categorization by dividing the 

wetland area they were investigating into low, medium, and high marshland.  Once the 

wetlands were categorized, their models returned significantly better results and more 

accurately assessed the variations in their indicator species, Spartina foliosa (Pacific 

cordgrass).  They showed that stem and leaf length of Spartina foliosa were largely 

responsible for the differences in spectral response they observed in their images.  

However, since marsh height was the principle cause of stem and leaf length differences, 

when marsh height was factored into their model, it became much easier to assess 

changes due to other factors.  While this study wasn’t a stunning advance in scientific 

insight, the methodology used by Phinn et al. (1999) demonstrates a practical and 
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straightforward approach to measuring wetland change.  It employs readily available data 

sources in a method that is easy to understand and economical to operate, and its 

simplicity means errors will be easier to discover and account for.   
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3 Research Methodology 

The first step of the process is to obtain pre- and post-diversion Landsat images to 

delineate the area affected by the freshwater diversion.  Once the study area is defined, it 

can be categorized into wetlands and “other terrain,” which includes open water, 

developed land, or any landform type other than a wetland.  By examining satellite 

images that were taken over a specific time interval and comparing the area of wetlands 

in each of them, it should be possible to determine whether the wetlands are increasing or 

decreasing, and by how much.   

 

As long as there is a rigorous control baseline defined for the area under study that can be 

applied across all of the images, it should be possible to resolve any change the 

freshwater diversion is causing in the wetlands areas.  Ideally, at the end of the study we 

will have some precise quantifiable values for wetland changes to the areas of concern.  

Since we know the total cost of the Caernarvon structure, we will be able to calculate the 

cost of wetland restoration per acre.  In that manner, we will have a sound methodology 

to make determinations as to the efficacy of the diversion structures, and we will be able 

to compare that to other wetland restoration processes being used or proposed for the 

Mississippi Delta.   

 

In order to determine the effectiveness of the diversion structures as a method of 

addressing wetland loss, this research uses satellite images to measure any gain or loss of 

wetlands in the areas directly impacted by these diversion structures.  Only the 

Caernarvon diversion has been in operation in this area of the Mississippi delta long 

45 



 

enough (16 years) to monitor its effect on wetlands, so this was used to measure what, if 

any, effect diversion has had on wetland loss.   

 

Two study areas are used, one that includes the entire Breton Sound, approximately 10.5 

km2 (Figure 8), and another much smaller area directly below the diversion structure, 

approximately 3 km2 (Figure 9).  The two areas are used because in the course of the 

project it became clear that the further reaches of Breton Sound were not noticeably 

affected by the freshwater diversion.  Reducing the area of study would hopefully 

measure changes that were a direct result of the diversion. 
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Figure 8. Main Breton Sound study area (USGS 2002). 
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Figure 9. Area close to freshwater discharge (USGS 2002). 

 

Six satellite images were used, one Multispectral Scanner (MMS) image from 1974, and 

five Thematic Mapper (TM) images from 1983, 1988, 1991, 2002, and 2006.  The images 

chosen were all taken during the fall/winter season in an attempt to reduce seasonal 

variation between images.  Images with adverse atmospheric effects were avoided, and 

only cloud-free images were used.  However, some variation in quality among the images 

is inevitable. 
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The Multispectral Scanner and the Thematic Mapper are two instruments used aboard the 

early NASA remote sensing satellites.  The Multispectral Scanner was the older of the 

two, and its spectral range covered the entire spectra from green through red to infrared.  

The Thematic Mapper narrowed the bandwidth it received to only those spectra that 

experience showed were less affected by the atmosphere.  This improved researcher’s 

ability to focus on actual ground radiance and reduce atmospheric interference.  The 

following is a list of the spectral bands used by the two satellite platforms and their 

wavelengths (Table 2): 

 

Thematic Mapper Multispectral Scanner 

Band Wavelength Common name Band Wavelength Common name 

3 0.63 – 0.69 μm Red (R) 5 0.60 – 0.70 μm Red (R) 

4 0.76 – 0.90 μm Near-IR (NIR) 6 0.70 – 0.80 μm Near-IR (NIR) 

5 1.55 – 1.75 μm Mid-IR (MIR) 7 0.80 – 1.10 μm Mid-IR (MIR) 

Table 2. Satellite sensor bandwidths. 

 

Seven spectral enhancement procedures were used (Table 3): 

 

Index Formula 

Normalized Diff Vegetation Index (NDVI): (Band 4 – Band 3) / (Band 4 + Band 3) 

Transfomed NDVI (T-NDVI): Sqrt((Band 4 – Band 3 / Band 4 + Band 3) + 0.5) 

Vegetation Index (VI): Band 4 – Band 3 

Table 3. Spectral bands used by studied indices. 
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Infrared / Red (NIR/R): Band 4 / Band 3 

Square of Infrared / Red (SqrtNIR/R): Sqrt(Band 4 / Band 3) 

Normalized Diff Water Index (NDWI): (Band 3 – Band 5) / (Band 3 + Band 5) 

Principal Component Analysis (PCA) (Bands determined by analysis) 

Table 3. Spectral bands used by studied indicies (continued). 

 

The Normalized Difference Vegetation Index (NDVI) was developed in the early days of 

the remote sensing satellite programs, particularly from data collected by the Earth 

Resources Technology Satellite (ERTS, which would eventually be renamed Landsat-1).  

Differences in solar zenith angle across the large swath image captured with each orbital 

pass were making it difficult to quantify rangeland vegetation.  By taking the ratio of the 

differences between the red and infrared wavelengths over their sum, they were able to 

“normalize” these solar zenith angle effects (Rouse et al. 1973).  It was an effective 

technique that was soon widely applied in many vegetation classification efforts. The 

Transformed NDVI (T-NDVI) is a slight variation on the standard NDVI.  Taking the 

square-root variation of the difference-sum ratio will sharpen the contrast between 

vegetation and non-vegetation in some images. 

 

In addition to the indices discussed above, Vegetation Index (VI), NIR/Red, and Sqrt 

NIR/IR (Table 3) were also used in this study.  While they are very simple indices, they 

nonetheless were very useful when used to determine biomass by measuring green leaf 

area (Tucker 1979).  When used to separate vegetation from water, the high reflectivity of 

leaf biomass in the NIR and Red wavelengths is balanced by their near total absorption 

by water.   
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The Normalized Difference Water Index (NDWI) index uses the same formula as the 

NDVI, but substitutes TM Band 3 (0.63 – 0.69 μm) for TM Band 4 (0.76 – 0.90 μm) and 

TM Band 5 (1.55 – 1.75 μm) for TM Band 3 (0.63 – 0.69 μm).  This index was chosen 

because it has been demonstrated to be useful in the delineation of water from other 

landforms, including vegetation (Gao, 1996). 

 

There are literally hundreds of indices in use today, but these six were chosen because of 

their potential to measure wetland change.  All of the indices but one use Landsat Bands 

3 and 4 (0.63 – 0.69 μm and 0.76 – 0.90 μm, respectively).  These bands are ideal 

because they display a large contrast between water and vegetation as the result of high 

IR absorption of water and high NIR reflectance by the vegetation.  Vegetation absorbs 

energy in the red wavelengths  (TM Band 3), but its reflectance in the NIR wavelengths 

(TM Band 4) is high. 

 

In addition to vegetation indices discussed above, Principal Component Analysis (PCA) 

was also used in the data analysis.  PCA attempts to enhance the original data by 

condensing redundant components within correlated variables into a reduced set of 

uncorrelated variables, called principal components.  These principal components are 

then used to differentiate between water and vegetation.   

 

While each of the procedures returns an image in which the water and vegetation 

classification can be done, the images are all slightly different.  It is difficult to say which 
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procedure is more accurate, and perhaps even impossible.  The images were taken under 

different conditions over a period of fifteen years, and some procedures return better 

results than others given the conditions of that particular day.  While the images were 

chosen to reduce as many differences as possible, variation is inevitable. 

 

By using seven different procedures to classify the images, the researcher intended that 

some differences between images will be averaged out and allow an overall trend to 

emerge.  While not strictly a meta-analysis, as the different factors are not weighted 

according to their confidence level, the procedure does allow a trend to emerge, 

especially when taking the relatively long timeline (15 years) into consideration.  

 

After obtaining the spectrally enhanced images, they were classified as water or 

vegetation using an unsupervised classification procedure.  The amount of water and 

vegetation in the area of interest (AOI) of each image was determined and its percent of 

the total image calculated.  By comparing the percentage of vegetation to open water in 

each image, it was possible to determine what effect the diversion structure has had on 

the wetland vegetation (Figure 10 and Figure 11).
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Figure 10 Wetland loss progression using NDVI. 
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Figure 11 Comparison of all six indices using 2006 image.

54 



 

Amount of vegetation compared to water is a very rough approximation of wetland 

extent, but will function well enough for the purposes of this research.  While it would be 

desirable to measure many more aspects of the environment, such as specific plant 

species and their distribution, as well as amount of bare soil, human impacts, etc, the 

spatial resolution restrictions of using Thematic Mapper (30m) and Multispectral Scanner 

(80m) preclude such detailed investigations.  On the other hand, these images have the 

decided advantage of being historical records of long-term changes in the wetlands, and 

change is exactly what this research seeks to determine. 
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4 Results and Conclusions 

The result of the analysis shows that the wetland vegetation in the Breton Sound Basin 

fluctuated significantly in the years leading up to the completion of the diversion 

structure.  Whereas the average vegetation percentage had decreased from 60 percent in 

1974 to 52 percent in 1983, it increased to 57 percent in 1988.  However, after 1988 it 

began decreasing once again.  Vegetation dropped to 55 percent in 1991, 50 percent in 

2002, and 45 percent in 2006 (Figure 12).  This shows a significant – and accelerating – 

decrease in wetland extent. 

 

 

Figure 12. Breton Sound overall wetland loss. 
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The Caernarvon diversion structure began operating in 1991, and unfortunately there 

does not appear to be any change in the steady replacement of vegetation by open water 

in the outflow area.  Indeed, there appears to be an increase in the rate of vegetation and 

wetland loss, as the rate of vegetation loss was only 0.17 percent per year from 1974 to 

1991.  The rate of loss increased to 0.67 percent per year from 1991 to 2006.  Figure 13 

and Figure 14 show the pre- and post-diversion wetland loss, respectively.  Pre-diversion 

wetland loss (Figure 13) exhibits significant fluctuation over time; indeed, the VI (NIR-

Red) index shows an increase in wetlands over the pre-diversion time period.  However, 

the other indices show decreasing wetlands over time.  The black trendline for the 

average value clearly shows a decreasing trend (Figure 13).  While not a strong trend, it 

nevertheless indicates a gradual loss of wetland (and increase in open water).  The 

trendline shows a pre-diversion wetland loss of 0.17 percent per year (58 percent to 55 

percent from 1974 to 1991). 
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Figure 13. Breton Sound pre-diversion wetland loss and trendline. 

 

Post-diversion wetland loss is significantly higher, 0.67 percent per year, which seems to 

indicate an overall increase in wetland loss.  The trendline clearly shows this increase in 

the rate of loss, from 55 percent in 1991 to 45 percent in 2006 (Figure 14).   
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Figure 14. Breton Sound post-diversion wetland loss and trendline. 

 

From the post-diversion increase in wetland loss, it appears that the Caernarvon 

freshwater structure has not been very effective in reversing the wetland loss in target 

areas.  It is also possible that the Caernarvon structure is simply not able to affect the 

entire Breton Sound area, and may only be affecting wetlands much closer to its outflow 

channel.  To determine if this is the case, an additional set of much smaller images were 

examined, focusing on areas closer to the outflow channel.  These images cover an area 

approximately one-fourth the size of the Breton Sound images (3 km2 as opposed to 10.5 

km2).  The analysis of the area closer to the outflow reveals significant differences 

(Figure 15). 
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Figure 15. Overall wetland loss and trendline for area close to diversion. 

 

Overall wetland loss for the area closer to the diversion outflow is slightly smaller, 11 

percent for the new small area as opposed to 13 percent for the entire Breton Sound area.  

Unfortunately, wetland loss continues to occur in the new area, and does exhibit a similar 

trend of increasing rate of wetland loss over time even after the opening of the 

Caernarvon diversion structure. 

 

In the new, smaller area, before the opening of the Caernarvon structure, wetland loss is 

very slow.  Unfortunately, as with the larger area, there is still significant fluctuation in 

the rate of wetland loss, making it very difficult to have any confidence in the overall 

trend.  Nevertheless it does indicate an overall loss of wetlands (Figure 16). 
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Figure 16. Pre-diversion wetland loss and trendline for area close to diversion. 

 

By contrast, the post-diversion rate of wetlands loss is significantly higher.  This is shown 

by the steeper trendline in Figure 17.  This would indicate that despite the area being 

more directly affected by diversion structure, wetland loss continues to occur and indeed 

is accelerating. 
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Figure 17. Post-diversion wetland loss and trendline for area close to diversion. 

 

This research revealed a number of interesting trends.  On the one hand, the overall 

wetland loss indicates that the Caernarvon Diversion Structure has had little or no effect 

on wetland loss in the Breton Sound area.  There has been significant wetland loss after 

the opening of the diversion structure for both the complete Breton Sound area and the 

more compact area adjacent to the structure.  Not only has there been significant wetland 

loss, that loss appears to be increasing.   

 

There are of course many factors to be considered in wetland loss, and one very 

significant event that took place over the course of this research was the change due to 

Hurricane Katrina, which passed almost directly over the research area on 29 August 

62 



 

2005.  Studies on the effects of Katrina on the wetlands are now being conducted; these 

studies are expected to shed light on these effects in the Breton Sound area.  It is clear 

that there was a significant loss of vegetation in both of the study areas.  Every single 

index shows a significant drop in vegetation in the last, post-Katrina image (taken 28 

October 2006).  The drop-off in vegetation is especially evident in the smaller area closer 

to the diversion structure.  The average reduction in vegetation there is 15 percent, 

varying from a high of 21 percent for the NIR/IR index and a low of 9 percent for the 

NDVI.  For the complete Breton Sound area the average drop was a somewhat smaller 5 

percent.  It varied from a high of 7 percent for the NIR/IR index to a low of 2 percent for 

the NDVI.  At this point it is probably impossible to determine how much of the blame 

for wetland loss can be attributed to Katrina, as the wetlands in these areas continue to be 

impacted by the numerous factors outlined earlier in this paper, such as sea level rise, oil 

and gas development, etc.   

 

While the wetland loss appears to continue unabated, the use of spectral indices to as a 

means of measuring that loss shows good results.  All the indices were in general 

agreement, and while there were significant fluctuations in their results, overall they 

supported rather than contradicted one other.  As a result, it appears that wetland loss can 

be measured using this relatively simple approach. 

 

Freshwater diversion is just one of a number of strategies designed to prevent wetland 

loss.  Following Hurricane Katrina there has been renewed interest in wetland restoration, 

and a subsequent increase in funding available to accomplish it.  While the diversion 
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structures area unlikely to accomplish the job by themselves, perhaps in concert with 

other strategies they may play a small but important part in rescuing a valuable 

disappearing resource.   
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