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—|. BLUNDEN, D. S. ARNDT, AND M. 0. BARINGER

Several large-scale climate patterns influenced climate
conditions and weather patterns across the globe during
2010. The transition from a warm El Nifo phase at the
beginning of the year to a cool La Nifa phase by July
contributed to many notable events, ranging from record
wetness across much of Australia to historically low
Eastern Pacific basin and near-record high North Atlantic
basin hurricane activity. The remaining five main hur-
ricane basins experienced below- to well-below-normal
tropical cyclone activity. The negative phase of the Arctic
Oscillation was a major driver of Northern Hemisphere
temperature patterns during 2009/10 winter and again in
late 2010. It contributed to record snowfall and unusually
low temperatures over much of northern Eurasia and
parts of the United States, while bringing above-normal
temperatures to the high northern latitudes. The Febru-
ary Arctic Oscillation Index value was the most negative
since records began in 1950.

The 2010 average global land and ocean surface tem-
perature was among the two warmest years on record.
The Arctic continued to warm at about twice the rate of
lower latitudes. The eastern and tropical Pacific Ocean
cooled about |°C from 2009 to 2010, reflecting the transi-
tion from the 2009/10 El Nifio to the 2010/11 La Nifa.
Ocean heat fluxes contributed to warm sea surface tem-
perature anomalies in the North Atlantic and the tropi-
cal Indian and western Pacific Oceans. Global integrals
of upper ocean heat content for the past several years
have reached values consistently higher than for all prior
times in the record, demonstrating the dominant role of
the ocean in the Earth’s energy budget. Deep and abys-
sal waters of Antarctic origin have also trended warmer
on average since the early 1990s. Lower tropospheric
temperatures typically lag ENSO surface fluctuations
by two to four months, thus the 2010 temperature was
dominated by the warm phase El Nifio conditions that
occurred during the latter half of 2009 and early 2010
and was second warmest on record. The stratosphere
continued to be anomalously cool.

Annual global precipitation over land areas was about
five percent above normal. Precipitation over the ocean
was drier than normal after a wet year in 2009. Overall,
saltier (higher evaporation) regions of the ocean surface
continue to be anomalously salty, and fresher (higher
precipitation) regions continue to be anomalously fresh.
This salinity pattern, which has held since at least 2004,
suggests an increase in the hydrological cycle.

§16 | BAIMS JUNE201

Sea ice conditions in the Arctic were significantly dif-
ferent than those in the Antarctic during the year. The
annual minimum ice extent in the Arctic—reached in
September—was the third lowest on record since 1979.
In the Antarctic, zonally averaged sea ice extent reached
an all-time record maximum from mid-June through late
August and again from mid-November through early De-
cember. Corresponding record positive Southern Hemi-
sphere Annular Mode Indices influenced the Antarctic
sea ice extents.

Greenland glaciers lost more mass than any other
year in the decade-long record. The Greenland Ice Sheet
lost a record amount of mass, as the melt rate was the
highest since at least 1958, and the area and duration of
the melting was greater than any year since at least 1978.
High summer air temperatures and a longer melt season
also caused a continued increase in the rate of ice mass
loss from small glaciers and ice caps in the Canadian Arc-
tic. Coastal sites in Alaska show continuous permafrost
warming and sites in Alaska, Canada, and Russia indicate
more significant warming in relatively cold permafrost
than in warm permafrost in the same geographical area.
With regional differences, permafrost temperatures are
now up to 2°C warmer than they were 20 to 30 years
ago. Preliminary data indicate there is a high probability
that 2010 will be the 20th consecutive year that alpine
glaciers have lost mass.

Atmospheric greenhouse gas concentrations contin-
ued to rise and ozone depleting substances continued to
decrease. Carbon dioxide increased by 2.60 ppm in 2010,
a rate above both the 2009 and the 1980-2010 average
rates. The global ocean carbon dioxide uptake for the
2009 transition period from La Nifa to El Nifio conditions,
the most recent period for which analyzed data are avail-
able, is estimated to be similar to the long-term average.
The 2010 Antarctic ozone hole was among the lowest
20% compared with other years since 1990, a result
of warmer-than-average temperatures in the Antarctic
stratosphere during austral winter between mid-July and
early September.



I. INTRODUCTION—D. §. Arndt, . Blunden, and

M. 0. Baringer

The primary goal of the annual State of the Climate
collection of articles is to document the weather and
climate events of the most recent calendar year and
put them into accurate historical perspective, with
a particular focus on unusual or anomalous events.
This is the 21st annual edition of this effort, includ-
ing its origin as NOAA’s Climate Assessment, and
the 16th consecutive year of its association with the
Bulletin of the American Meteorological Society. The
State of the Climate series continues to grow in scope
and authorship. This edition presents contributions
from the largest body of authors to date and brings
several new sections to the readership.

The year 2010 was notable for its globally-averaged
warmth and for the far-reaching impacts related
to significant behavior of several modes of climate
variability. These modes have unique influences and
impacts throughout the climate system. Indeed, each
chapter in this document contains special mention
of ENSO, or the various hemispheric indices such as
the Arctic Oscillation or Southern Annular Mode.
Sidebar 1.1, which was coordinated by the Chapter 2
(Global Climate) editors, is intended as an introduc-
tory overview of selected known modes of variability.
More practically, it serves as a data-laden reference
for readers of later chapters. The online supplement
includes additional data that allow the reader to in-
vestigate further.

Different regions have different sensitivities and
thus varying definitions of ENSO. This, combined
with the global authorship of the State of the Cli-
mate in 2010, led to various descriptors of the peak
strengths of the early-2010 El Nifo episode and the
late-2010 La Nifia. This was standardized, where
possible, using NOAA’s description of “strong” for
El Nifio and “moderate-to-strong” for La Nifa. In
more regional discussions, these descriptors have
not been changed.

In order to build a broader description of the cli-
mate system, this report aims each year to increase the
number of represented Essential Climate Variables
(ECVs), as defined and maintained by the climate
observing community through the Global Climate
Observing System (GCOS 2003; Fig. 1.1) . To that end,
new editors representing expertise in two broad dis-
ciplines (terrestrial processes and atmospheric com-
position) were added to the panel serving Chapter 2.

The following ECVs included in this edition are
considered “fully monitored”, such that they are ob-
served and analyzed across much of the world, with a

STATE OF THE CLIMATE IN 2010

sufficiently long-term dataset that has peer-reviewed
documentation:

o Atmospheric Surface: air temperature, pre-
cipitation, air pressure, water vapor*.

o Atmospheric Upper Air: earth radiation
budget, temperature, water vapor, cloud
properties.

o Atmospheric Composition: carbon dioxide,
methane, ozone, nitrous oxide, chloro-
fluorocarbons, hydrochlorofluorocarbons,
hydrofluorocarbons, sulphur hexafluorides,
perflurocarbons*, aerosols.

o Ocean Surface: temperature, salinity, sea level,
sea ice, current, ocean color.

o Ocean Subsurface: temperature, salinity*.

o Terrestrial: snow and ice cover.

ECVs in this edition that are considered “partially
monitored”, meeting some but not all of the above
requirements, include:

o Atmospheric Surface: wind speed and direc-

tion.

»  Atmospheric Composition: long-lived green-
house gases not listed as fully monitored
above.

o Ocean Surface: carbon dioxide.

o Ocean Subsurface: current, carbon.

o  Terrestrial: soil moisture, permafrost, glaciers
and ice sheets, river discharge, groundwater?,
lake levels, fraction of absorbed photosyn-
thetically-active radiation, biomass, fire
disturbance.

h
=

i
=]

Number of Reported ECVs
[ [
o (=

-
=]

1]

2007 2008

Year 2009 2010

Fig. I.I. Number of fully or partially monitored Essen-
tial Climate Variables (ECVs) reported in the annual
State of the Climate editions since 2007. Atmospheric
surface water vapor, atmospheric perfluorocarbons,
oceanic subsurface salinity, and terrestrial lake levels
have been introduced in this current edition.
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ECVs that are expected to be added in the future

include:
o Atmospheric Surface: surface radiation
budget.
o Atmospheric Upper Air: wind speed and
direction.

o Ocean Surface: sea state.

. Ocean Subsurface: nutrients, ocean tracers,
phytoplankton.

o Terrestrial: surface ground temperature, sub-
surface temperature and moisture, water use,
albedo, land cover, leaf area index.

*These ECVs were introduced to the report in this

edition.

A brief overview of the findings in this report is
presented in the Abstract and shown in Fig. 1.2. The
remainder of the report is organized starting with
global-scale climate variables (Chapter 2) to increas-
ingly divided geographic regions described in Chap-
ters 3 through 7. Chapter 3 highlights the global ocean
and Chapter 4 includes tropical climate phenomena
such as El Nifio/La Nifa and tropical cyclones. The
Arctic and Antarctic respond differently through
time and hence are reported in separate chapters
(5 and 6). Chapter 7 provides a regional perspective
authored largely by local government climate special-
ists. Sidebars included in each chapter are intended
to provide background information on a significant
climate event from 2010, a developing technology, or
an emerging dataset germane to the chapter’s content.
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A. KAPLAN

Climate variability is not uniform in space; it can be
described as a combination of some “preferred” spatial
patterns. The most prominent of these are known as
modes of climate variability, which affect weather and cli-
mate on many spatial and temporal scales. The best known
and truly periodic climate variability mode is the seasonal
cycle. Others are quasi-periodic or of wide spectrum
temporal variability. Climate modes themselves and their
influence on regional climates are often identified through
spatial teleconnections, i.e., relationships between climate
variations in places far removed from each other.

For example, Walker (1924) named the Southern
Oscillation (SO) and associated its negative phase with
Indian monsoon failure. Later, Bjerknes (1969) connected
negative SO phases with El Nifio occurrences episodes of
amplified seasonal ocean surface warming in the eastern
equatorial Pacific and coastal Peru (Fig. 1.3a). Subse-
quently, the El Nilo—Southern Oscillation (ENSO) was
observed to be a powerful, demonstrably coupled tropical
ocean-atmosphere variability with a global set of climate
impacts. In recent years, ENSO events were separated
into canonical (Eastern Pacific) and Central Pacific ENSO
events (a.k.a. “Modoki”, Fig. |.3b; see Ashok et al. 2007).

Walker (1924) also noticed a smaller-scale (compared
to the SO) seesawing surface pressure between the
Azores and Iceland (Fig. 1.3c) and named it the North
Atlantic Oscillation (NAO; Stephenson et al. 2003). A
positive phase of the NAO strengthens the Atlantic storm
track and moves it northward, resulting in warm and wet
European winters, and cold and dry winters in Greenland
and northeastern Canada. In the negative phase the storm
track is weaker and more eastward in direction, resulting
in wetter winters in southern Europe and the Mediter-
ranean and a colder northern Europe (Hurrell et al. 2003).

Traditionally, indices of climate variability were defined
as linear combinations of seasonally-averaged anomalies
from meteorological stations chosen in the proximity of
maxima and minima of the target pattern. Since gridded
fields of climate variables are now available, appropriate
regional averages often replace station data. The stron-
gest teleconnections in a climate field are also identified
by pairs of grid points with the strongest anti-correlation
(Wallace and Gutzler 1981). Table I.| defines the most
prominent modes of largescale climate variability and the
various indices used to define them; changes in these
indices are associated with large-scale changes in climate
fields. With some exceptions, indices included in Table
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SIDEBAR I.1: PATTERNS AND INDICES OF CLIMATE VARIABILITY—

I.I generally have been (I) used by a variety of authors
and (2) defined relatively simply from raw or statistically
analyzed observations of a single surface climate variable,
so that observational datasets longer than a century exist.

Climate variability modes sometimes force other
modes of climate variability. For example, a principal
component analysis of the North Pacific sea surface
temperature (SST) anomaly field (20°N-70°N), relative
to the global mean, gives a pattern and index of the Pacific
Decadal Oscillation (PDO; Mantua et al. 1997; Zhang et
al. 1997), illustrated in Fig. 1.3d. Itis different from ENSO
but thought to be connected to it through atmospheric
bridges and/or internal oceanic wave propagation (New-
man et al. 2003; Newman 2007; Schneider and Cornuelle
2005). Despite being defined with Northern Hemisphere
data only and being similar to the simple mean sea level
pressure-based North Pacific Index (NPI; Trenberth and
Hurrell 1994), the PDO index captures well variability in
both hemispheres and is similar to the Interdecadal Pacific
Oscillation (IPO; Folland et al. 1999; Power et al. 1999).

Principal component analysis of the entire Northern
Hemisphere extratropical sea level pressure field identifies
a leading mode known as the Northern Annular Mode
(NAM) or Arctic Oscillation (AO), which turns out to be
very similar to the NAO (Thompson and Wallace 1998,
2000). The Pacific North American pattern (PNA; Fig.
I.3e) also appears as one of the leading variability patterns
in the Northern Hemisphere. A Southern Hemisphere
analogue of the NAM is the Southern Annular Mode
(SAM, Fig. 1.3f), also referred to as the Antarctic Oscilla-
tion (AAO), calculated using mean sea level pressure, 850
hPa, or 750 hPa geopotential height in the extratropical
Southern Hemisphere (Gong and Wang 1999; Thompson
and Wallace 2000).

Atlantic Ocean meridional circulation is affected by
the Atlantic Meridional Oscillation (AMO; Fig. 1.3g),
which is indexed by the average Atlantic Ocean SST
from which the long-term trend is removed (Enfield et
al. 2001; Trenberth and Shea 2006). Regional modes of
tropical climate variability were identified in Atlantic and
Indian Oceans: Atlantic Nifio mode and tropical Atlantic
meridional mode, Indian Ocean Basin Mode, and Indian
Ocean Dipole mode (Fig. I.3h-k). These modes dominate
SST variability in these regions (Deser et al. 2010). The
“Cold Ocean-Warm Land” (COWL, Fig. 1.3l) variability
is not thought to represent a “true” climate variability
mode (Wallace et al. 1995) but has proved very useful for



interpreting variations in the hemispheric-scale surface
temperature means (Thompson et al. 2008).
The multiplicity of indices defining the same climate

phenomenon arises because no index can achieve a per-
fect separation of a target phenomenon from all other
effects in the real climate system [e.g., see Compo and

is always application specific.

Sardeshmukh (2010) discussion for the ENSO case]. As a
result, each index is affected by many climate phenomena
whose relative contributions change with time periods and
data used. Limited length and quality of observational re-
cord compounds this problem. Thus the choice of indices

Table I.1: Established indices of climate variability with global or regional influence.

Climate Index name Index Definition Primary Characterization /
Phenomenon References Comments
El Nifio — Southern NINO3 SST anomaly averaged Cane et al. Traditional SST-based ENSO
Oscillation (ENSO) over (1986); index
- canonical, Eastern (5°S-5°N, 150°W-90°W) Rasmusson and
Pacific ENSO Wallace (1983)
NINO3.4 SST anomaly averaged Trenberth Used by NOAA to define El
over (1997) Nifo/La Nina events. Detrend-
(SOS—SON, |70°W—|20°W) ed form is close to the It PC of
linearly detrended global field of
monthly SST anomalies (Deser
etal. 2010)
Cold Tongue SSTA (6°N-6°S, 180°— Deser and Matches “cold tongue” area,
Index (CTI) 90°W) minus global mean Wallace (1990) | subtracts effect of the global
SSTA average change
Troup SOI Standardized for each Troup (1965) Used by Australian Bureau of
calendar month MSLP Meteorology
difference: Tahiti minus
Darwin, x10
SOl Standardized difference of | Trenberth Maximizes signal to noise ratio
standardized MSLP anoma- | (1984) of linear combinations of Dar-
lies: Tahiti minus Darwin win/Tahiti records
Darwin SOI Standardized Darwin Trenberth and Introduced to avoid use of the

MSLP anomaly

Hoar (1996)

Tahiti record, considered suspi-
cious before 1935.

Equatorial SOI
(EQSQI)

Standard difference of
standard MSLP anomalies
over equatorial (5°S—
5°N) Pacific Ocean; east
(130°W-80°W) minus
west (90°E-140°E)

Bell and Halpert
(1998)

Central Pacific El
Nifio (Modoki)

El Nifio Modoki
Index (EMI)

SSTA: [165°E—140°WV,
10°S—10°N] minus
%[110°W=70°W, 15°S—
5°N] minus /2[125°E—
145°E, 10°S-20°N]

Ashok et al.
(2007)

A recently identified ENSO vari-
ant: Modoki or Central Pacific
El Nifio (non-canonical)
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cont. SIDEBAR 1.1: PATTERNS AND INDICES OF CLIMATE

VARIABILITY—A. KAPLAN

station data

Climate Index name Index Definition Primary Characterization /
Phenomenon References Comments
Pacific Decadal and Pacific Decadal Ist PC of the N. Pacific Mantua et al.
Interdecadal Vari- Oscillation SST anomaly field (20°N— (1997); Zhang
ability (PDO) 70°N) with subtracted etal. (1997)
global mean
Intedecadal Pa- The 3rd EOF3 of the Folland et
cific Oscillation 13-year low-pass filtered al. (1999);
(IPO) global SST, projected Power et al.
onto annual data (1999)
North Pacific SLP (30°N-65°N, Trenberth
Index (NPI) 160°E-140°W) and Hurrell
(1994)
North Atlantic Lisbon/Ponta Lisbon/Ponta Delgada Hurrell A primary NH teleconnec-
Oscillation Delgada-Styk- minus Stykkisholmur/ (1995) tion both in MSLP and Z500
kisholmur/ Reykijavik standardized anomalies (Wallace and
Reykjavik MSLP anomalies Gutzler 1981); one of rotated
North Atlantic EOFs of NH Z500 (Barnston
Oscillation and Livezey 1987) . MSLP
(NAO) Index anomalies can be monthly,
seasonal or annual averages.
Gibraltar - Gibraltar minus Reykja- Jones etal. Each choice carries to the
Reykjavik NAO | vik standardized MSLP (1997) temporal resolution of the
Index aremales NAO index produced that
way.
PC-based NAO Leading PC of MSLP Hurrell
Index anomalies over the (1995)
Atlantic sector (20°N—
80°N, 90°W-40°E)
Annular modes: PC-based AO Ist PC of the monthly Thompson Closely related to the NAO
Arctic Oscillation index mean MSLP anomalies and Wallace
(AO), a.k.a. North- poleward of 20°N (1998, 2000)
ern Annular Mode
(NAM) Index and !’C-based AAO Ist PC of gSOhPa or Thompson
Ananeie Csallk index 700hPa height anomalies and Wallace
tion (AAO), a.k.a. south of 20°S (2000)
Southern Annular Grid-based Difference between Gong and
Mode (SAM) Index AAO index: normalized zonal mean Wang (1999)
40°S—65°S dif- MSLP at 40°S and
ference 65°S, using gridded SLP
analysis
Grid-based Same as above but uses Nan and Li
AAO index: latitudes 40°S and 70°S (2003)
40°S-70°S dif-
ference
Station-based Difference in normal- Marshall
AAQ index: ized zonal mean MSLP (2003)
40°S-65°S at 40°S and 65°S, using
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Climate Index name Index Definition Primary Characterization /
Phenomenon References Comments
Pacific/North PNA pattern Y4[Z(20°N, 160°W) Wallace A primary NH teleconnec-
America (PNA) index - Z(45°N, 165°W) and Gutzler tion both in MSLP and Z500
atmospheric tele- + Z(55°N, 115°W) - (1981) anomalies
connection Z(30°N, 85°W)], Z is
the location’s standard-
ized 500 hPa geopoten-
tial height anomaly
Atlantic Ocean The- Atlantic Multi- 10-yr running mean of Enfield et al. Called “virtually identical” to
mohaline circulation decadal Oscil- de-trended Atlantic (2001) the smoothed first rotated N.
lation (AMO) mean SST anomalies Atlantic EOF mode
index (0°-70°N)
Revised AMO As above, but subtracts Trenberth
index global mean anomaly and Shea
instead of de-trending (2006)
Tropical Atlantic Atlantic Nifio SSTA (3°S-3°N, Zebiak Identified as the two leading
Ocean non-ENSO Index, ATL3 20°W-0°) (1993) PCs of detrended tropical
variability T Atlantic monthly SSTA (20°S—
Atlantic Nifio Ist P.C of the d.etrended Deser et al. 20°N): 38% and 25% variance
Index, PC- tropical A;tlantli: monthly (2010) respectively for HadISSTI,
based SSTA (20°5-20°N) 1900-2008 (Deser et al.
2010)
Tropical Atlan- 2nd PC of the detrended
tic Meridional tropical Atlantic monthly
Mode (AMM) SSTA (20°S—20°N)
Tropical Indian Indian Ocean The Ist PC of the IO de- Deser et al. Identified as the two leading
Ocean non-ENSO Basin Mode trended SST anomalies (2010) PCs of detrended tropical
variability (IOBM) Index (40°E-110°E, 20°S— Indian Ocean monthly SSTA
20°N) (20°S—20°N): 39% and 12% of
the variance, respectively, for
Indian Ocean The 2nd PC of the HadISSTI, 1900-2008 (Deser
Dipole mode 1O detrended SST etal. 2010)
(IODM), PC- anomalies (40°E-110° E,
based index 20°S-20°N)
Indian Ocean SST anomalies: 50°E— Saji et al.
Dipole Mode 70°E, 10°S—10°N)- (1999)
Index (DMI) (90°E-110°E, 10°S—0°)
Cold Ocean COWL Index Linear best fit to the Wallace et Useful for removing some
— Warm Land field of deviations of NH al. (1995); effects of natural climate vari-
(COWL) Variability temperature anomalies Thompson et ability from spatially averaged
from their spatial mean; al. (2008) temperature records.

the COWL pattern
itself is proportional to
the covariance pattern
of the NH spatial mean
with these deviations.
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cont. SIDEBAR 1.1: PATTERNS AND INDICES OF CLIMATE

VARIABILITY—A. KAPLAN
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FiG. 1.3. Selected indices of climate variability, as specified in Table 2.3, for the period 1880-2010, grouped
into categories: (a) Canonical El Nino -Southern Oscillation (ENSO); (b) the Modoki variant of ENSO;
(c) Northern Hemisphere oscillations (NAO, AO, NAM) for the boreal cold season; (d) indices of Pacific
Inter-decadal Variability; (e) Pacific-North American indices for the boreal cold season; (f) Southern
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AMO Index (Trenberth and Shea |, 2008)
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Hemisphere oscillations (SAM, AAO) for the austral cold season; (g) Atlantic Meridional Oscillation in-
dex; (h) Atlantic Nifio Mode indices; (i) Tropical Atlantic Meridional Mode Index; (j) Indian Ocean Basin
Mode Index; (k) Indian Ocean Dipole indices; and (I) Cold Ocean— Warm Land pattern. Unless otherwise
noted in their panel, 13-month running means of monthly data are shown.
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2. GLOBAL CLIMATE—K. M. Willett, A. J. Dolman,

B. D. Hall, and P. W. Thorne, Eds.

a. Introduction—-P. W. Thorne

The year 2010 was among the two warmest years
globally since the start of the surface instrumental
record in the late 19th century, although the range
makes it impossible to call the ranking definitively.
It was also the second warmest year in tropospheric
records since the mid-20th century. Glaciers very
likely experienced the 20th consecutive year of nega-
tive mass balance. The hydrological cycle experienced
many extremes and global land precipitation was
anomalously high. Greenhouse gases continued to
increase and ozone depleting substances continued
to decrease. The stratosphere continued to be anoma-
lously cold. This chapter describes these and other
indicators of ongoing changes in the Earth’s climate
system including atmospheric composition and ter-
restrial and cryospheric variables.

Climate is not just about decadal-scale externally
forced variability, thus substantial attention is given
to the major modes of natural variability (see Sidebar
1.1 for a general overview). Globally, 2010 was domi-
nated by two modes of natural climate variability—the
El Nifio-Southern Oscillation (ENSO) and the Arctic
Oscillation (AO). ENSO transitioned from a strong El
Nifio in early 2010 to a moderate-to-strong La Nifa
by the end of the year. Global temperatures typically
lag ENSO by a few months, thus the warm El Nifo
phase had the larger impact upon 2010 temperatures.
The AO reached its most negative value on record
over the winter of 2009/10 and was negative again in
the early winter of 2010/11. This led to extreme cold
winter conditions and snow cover through much of
the Northern Hemisphere midlatitudes and above-
normal winter temperatures in the high northern
latitudes.

A number of new variables are included in this
year’s report. There is a renewed focus on composition
changes and changes in terrestrial variables, provid-
ing a greater reach into these areas than ever before.
As discussed below, global lake temperatures have
increased since 1985 and show similar spatiotemporal
evolution to available land surface records. Global
groundwater fluctuations show a combination of
climate effects and direct human influences. Biomass
inventories show general decreases in the tropics and
increases in midlatitudes, reflecting deforestation
and afforestation, respectively. However, these are
uncertain and may have country-specific errors. The
reader will find many further new insights into ongo-
ing changes in the Earth and its climate.

STATE OF THE CLIMATE IN 2010

Several issues of general interest are highlighted
in sidebars within the chapter to illustrate both the
complexities of global climate monitoring and the
opportunities that new technologies and approaches
afford the community. Building upon the introduc-
tion of ERA reanalyses last year, several alternative
reanalysis products are included for temperature,
humidity, wind speed, and global aerosols. Reanaly-
sis products are also used to estimate global river
discharge patterns. To aid interpretation, Sidebar 2.1
provides a high-level exposition of reanalyses outlin-
ing recent developments along with potential caveats.
This is the first time that many of these products have
been shown together with more traditional climate
datasets, enabling simple broad-brush comparisons.
Satellite data from GRACE satellites are shown to be
hugely important for characterizing changes in ice
sheet mass balance, groundwater, and deep ocean
mass. Land surface winds are immensely challenging
to analyze for long-term behavior but indicate likely
weakening (‘stilling’) over time. Stratospheric water
vapor is very important for radiative balance, with
effects potentially felt at the surface, but it is extremely
challenging to monitor and several mysteries remain
regarding both mechanisms and trends.

Publicly available datasets used in this chapter are
detailed in Table 2.1. Anomalies for 2010 for all those
variables that could be calculated are given in Plate
2.1 and all available time series compiled into Plate
2.2, allowing ease of comparison.

PLATE 2.1. Global annual anomaly maps for those vari-
ables for which it is possible to create a meaningful
2010 anomaly estimate. Reference base periods differ
among variables, but spatial patterns should largely
dominate over choices of base period. Dataset sources/
names are as follows: lower stratospheric tempera-
ture (ERA-Interim); lower tropospheric temperature
(ERA-Interim); surface temperature (NOAA/NCDC);
cloudiness (PATMOS-x); total column water vapor
(AMSR-E over ocean, ground-based GPS over land);
surface specific humidity (ERA-Interim); precipitation
(RSS over ocean, GHCN (gridded) over land); ground-
water 2010-2009 differences (the sum of groundwater,
soil water, surface water, snow, and ice, as an equiva-
lent height of water in cm) (GRACE); river discharge
absolute values (authors); mean sea level pressure
(HadSLP2r); surface wind speed (AMSR-E over ocean,
authors in situ over land); ozone (SBUVs/OMI/TOMS/
GOMEI/SCIAMACHY/GOMEZ2, base period data from
the multi-sensor reanalysis, MSR); FAPAR [SeaWiFS
(NASA) and MERIS (ESA) sensors]; biomass burning
(GFAS-ECMWEF Reanalysis). See relevant section text
and figures for more details.
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Table 2.1. Sources of those datasets used in this chapter that are publicly available.

Source Datasets Section
http://nomads.ncdc.noaa.gov/ NCEP CFSR Sidebar 2.1, bl, cl, d2
http://gmao.gsfc.nasa.gov/imerra/ MERRA 3i2debar 2llg P15 S
http://www.esrl.noaa.gov/psd/data/20thC_Rean/ 20CR Sidebar 2.1, b2, b3, cl, d2

. . . Sidebar 2.1, bl, b2, b3, cl,
http://www.ecmwf.int/research/era ERA-Interim d2, Sidebar 2.3

. . Sidebar 2.1, bl, b2, b3, cl,
http://www.ecmwf.int/research/era ERA-40 d2, Sidebar 2.3
http://jra.kishou.go.jp/ JRA-25 Sidebar 2.1, bl, b2, cl, d2

Observations — Atmospheric Dynamics

. ) HadCRUT3; HadSLP2r; HadAT2; Had- bl, b2, b3,
http://www.metoffice.gov.uk/hadobs CRUH T
http://www.ncdc.noaa.gov/cmb-fag/anomalies.html NOAA/NCDC bl
http://data.giss.nasa.gov/gistemp/ NASA GISS bl, b4
http://www.ncdc.noaa.gov/oa/climate/ratpac RATPAC b2, b3
http://www.univie.ac.at/theoret-met/research Raobcore 1.4, RICH b2, b3
http://vortex.nsstc.uah.edu/public/msu/ UAH v5.4 b2, b3
http://www.remss.com RSS v3.3, SSM/I, AMSR-E, TMI ld’i 25 2 G
httP://www.star.nesdis.noaa.gov/smcd/emb/mscat/mscat- STAR 2.0 b2, b3
main.htm
http://www.noc.soton.ac.uk/noc_flux/noc2.php,

- N 2. |

http://dss.ucar.edu/datasets/ds260.3/ 0Cs2.0 ¢
by mail to adai@ucar.edu Dai cl
http://cosmic-io.cosmic.ucar.edu/cdaac/index.html COSMIC c2
http://www.eol.ucar.edu/deployment/field-deployments/
: . GPS c2
field-projects/gpspw
http://precip.gsfc.nasa.gov GPCP c3
http://www.ncdc.noaa.gov/oa/climate/ghcn-monthly/indes.php | GHCN c3
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html GPCC c3
http://www.esrl.noaa.gov/psd CMAP c3
http://www.ncdc.noaa.gov/cdr/operationalcdrs.html PATMOS-X c5
http://www.ncdc.noaa.gov/HODbS/ HIRS c5
http://ladsweb.nascom.nasa.gov MODIS c5
:E:L)I://eosweb.Iarc.nasa.gov/PRODOCS/misr/IeveI3/overview. MISR 5. f2
http://www.atmos.washington.edu/~ignatius/CloudMap SOBS c5
http://isccp.giss.nasa.gov ISCCP D2 c5
http://www..ncqgnoaa.gov/oa/climate.lsd.lndex. ISD-LITE Sidebar 2.3
phplname=isdlite
http://ceres.larc.nasa.gov/sitemap_ceres.php CERES e
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Terrestrial

http://largelakes.jpl.nasa.gov/2010-result Lake Temperature Data b4
http://climate.rutgers.edu/snowcover Snow Cover c4
http://grdc.bafg.de ; )
http://www.gtn-h.net River Discharge c6
http://nsidc.org/data/g02190.html Permafrost Data c7
http://gracetellus.jpl.nasa.gov/relatedSites/ GRACE c8
http://www.csr.utexas.edu/grace/science_links.html Sidebar 2.2
http://www.ipf.tuwien.ac.at/insitu
http://gcmd.nasa.gov/recordssGCMD_GES_DISC_LPRM_AM4 Soil Moisture c9
SRE_SOILM2_VO00I.html
http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main
http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/ Altimetric Lake Level products clo
http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir
index.cfm
http://gcmd.nasa.gov/records/GCMD_ GLWD.html The Global Lake and Wetland Database | clO
http://www.geo.unizh.ch/wgms/ Glaciers gl
http://fapar.jrc.ec.europa.eu/ FAPAR g2
http://www.globalfiredata.org/ Biomass Burning g3
Atmospheric Composition
http://www.esrl.noaa.gov/gmd/dv/iadv/ CO,,CH,, CO fl
http://www.cmdl.noaa.gov/odgi/ ODGlI fl
http://www.esrl.noaa.gov/gmd/hats/combined/N20O.html N,O fl
http://www.esrl.noaa.gov/gmd/hats/combined/SFé.html SF, fl
http://www.esrl.noaa.gov/gmd/hats/combined/CFCI |.html CFC-I1 fl
http://www.esrl.noaa.gov/gmd/hats/combined/CFCI2.html CFC-12 fl
http://www.esrl.noaa.gov/gmd/aggi/ AGGI fl
http://agage.eas.gatech.edu/ PFCs fl
http://www.gmes-atmosphere.eu/data/ Aerosols f2
http://acdb-ext.gsfc.nasa.gov/Data_services/merged/ SBUV/TOMS/OMI MOD V8 merged f3
ozone dataset
GOME/SCIAMACHY/
http://www.iup.uni-bremen.de/gome/wfdoas GOMES?2 total ozone datasets, GSG| 3
merged data
ftp://ftp.tor.ec.gc.ca/Projects-Campaigns/ZonalMeans/ WOUDC groundbased ozone f3
http://rrllrad'or.gsfc.nasa_.govicgl-b|n/m|rador/presentNawgatlon. OMI total ozone (OMTO3) A
pl?tree=projectandproject=OMI
http://www.temis.nl/protocols/O3global.html Multi sensor reanalysis (MSR) f3
of total ozone
htFp://vaw.cpc.ncep.noaa.gov/products/preup/CWIlnk Arctic Oscillation (AO) 3
daily_ao_index/ao.shtml
ftp://ftp.cmdl.noaa.gov/ozwv/water_vapor/Boulder_New/ Boulder water vapor balloon Sidebar 2.4
http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/MLS/index.shtm[ MLS data Sidebar 2.4
http://haloe.gats-inc.com/home/index.php HALOE data Sidebar 2.4
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PLATE 2.2. Global average anomaly time series for those variables for which it is possible to create a meaningful
estimate. Reference base periods differ among variables, even within panels. For comparison, all time series
for each variable have been adjusted to have a mean of zero over a common period which is labeled. Dataset
types are as follows: lower stratospheric temperature (a; 4 radiosondes - black, 3 satellites - red, 3 reanalyses
- blue); lower tropospheric temperature (b; 4 radiosondes - black, 2 satellites - red, 5 reanalyses - blue); sur-
face temperature (c; 3 in situ - black, 5 reanalyses - blue); surface wind speed over ocean (d; | satellite - red,
6 reanalyses - blue); Northern Hemisphere snow cover (e; 3 satellite regions - red); precipitation over land
(f; 3 in situ - black); precipitation over ocean (g; 3 satellites - red); cloudiness (h; | in situ — black, 5 satellites -
red); total column water vapor (i; 3 satellites - red, | GPS - black); surface specific humidity over land (j; 2 in
situ - black, 6 reanalyses - blue); surface specific humidity over ocean (k; 3 in situ - black, 3 reanalyses - blue);
surface relative humidity over land (I; 2 in situ - black, 5 reanalyses - blue); surface relative humidity over ocean
(m; 2 in situ - black, 2 reanalyses - blue);. Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)
(n; | satellite — red); groundwater (o; | satellite — red). See relevant section text and figures for more details
including data sources.
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Table 2.2. Reanalyses products included in the Global Chapter.

Reanalyses
Product and
Reference

Data Assimilated

Variables shown
in the Global
Chapter

NCEP CFSR, Saha et
al. 2010

Atmospheric data: wind, temperature, humidity from radiosonde / dropsonde /pilot bal-
loons/ profilers / aircraft; Surface pressure, temperature, humidity, wind, from ship/buoy
reports; Surface land pressure from SYNOP/METAR; Retrieved ozone from satellites; Re-
trieved winds and radiances from geostationary satellites, Ocean surface wind from scat-
terometers; Radiances from temperature and humidity sounders: AIRS, HIRS, MSU, SSU,
AMSU-A/B, MHS; Radiances from passive microwave imagers over ocean: SSM/I, AMSR-E;
GPSRO bending angles from CHAMP, COSMIC (from 2001); Multi-sensor retrieved snow
cover from NOAA;NESDIS (from 2003)

Precipitation data: Pentad data set of CPC Merged Analysis of Precipitation and the CPC
unified global daily gauge analysis.

Ocean data: Temperature profiles from mobile platforms: expendable bathy thermo-

raphs and Argo drifting floats; and fixed platforms: TAO, TRITON, PIRAT%\, RAM;
galinity profiles synthesized from temperature profiles and climatological temperature
correlations and observed by Argo drifting floats.

SST: Two daily SST analysis products were developed using optimum interpolation (Ol).

2m temperature; 2m spe-
cific humidity; 10m ocean
windspeed

MERRA, Rienecker
etal. 2011

Atmospheric data: Winds, temperature and humidity profiles from radiosondes, drop-
sondes, pilot balloons and profilers; NEXRAD radar winds (I998—presen?; Surface pres-
sure from land SYNOP reports; surface pressure, winds, temperature and humidity from
ships and buoys; synthetic surface pressure observations (PAOBS); Temperature- and
humidity-sensitive infrared radiances from HIRS and SSU (1979-2006); Temperature-sen-
sitive microwave radiances from MSU (1979-2007) and AMSU-A (1998—present); Wind
and temperature reports from aircraft; Cloud-track winds from geostationary satellites
and from MODIS (2002-present); Moisture-sensitive radiances from SSM/I (1987-2009)
and AMSU-B (1998—present), precipitation, and surface wind-speed over the ocean from
SSM/I; Marine surface winds from ERS-I (1991-1996), ERS-2 #I 96—2001) and QuikScat
(1999-2009); Temperature and moisture sensitive radiances from GOES sounders; TRMM
rain rate; Temperature- and humidity-sensitive IR radiances from AIRS

2m temperature; MSU

2LT equivalent lower
tropospheric temperature;
MSU 4 equivalent lower
stratospheric temperature;
2m specific humidity; 10m
ocean windspeed

JRA-25, Onogi et al.
2007

Atmospheric data: Surface pressure, Radiosondes, Wind profiler, Aircraft wind, PAOBS,
Tropical cyclone wind retrieval, AMV ?ncludin reprocessed wind), Infrared radiances
from HIRS/SSU, Microwave radiances from MSU/AMSU/MHS, Precipitable water retrieval
from microwave imagers, Scatterometer wind

Surface data: Surface temperature, humidity and wind; Snow depth (including digitized
data over China), Snow cover retrieval from microwave imagers

2m temperature; MSU 2LT
equivalent lower tropo-
spheric temperature; 2m
specific humidity; 2m rela-
tive humidity; 10m ocean
windspeed

ERA-Interim, Dee et
al. 2011

Atmospheric data: Upper-air wind, temperature and humidity from radiosondes; drop-
sondes; pilot balloons and profilers; aircraft; Surface pressure, temperature and humidit
from land SYNOP reports; surface pressure, temperature, humidity and wind from SHI
reports; surface pressure, temperature and wind from buoys; surface pressure from
METAR; snow depth from SYNOP reports; Retrieved ozone from satellites; Retrieved
winds from geostationary satellites; Radiances from temperature and humidity sound-
ers: HIRS, SSU, MSU, AMSU-A/B, MHS; Radiances from passive microwave imagers
over ocean: SSM/I, SSMI/S, AMSR-E; Ocean surface wind from scatterometers on ERS-1,
ERS-2, QuikSCAT (from 1992); Radiances from geostationary infrared imaéers on GOES,
Meteosat and MTSAT (from 2001); GPSRO bending angles from CHAMP, COSMIC,
GRAS (from 2001); Radiances from high-spectral resolution sounder: AIRS (from 2003);
Retrieved winds from polar orbiting satellites: MODIS (from 2007)

Surface data: Multisensor retrieved snow cover from NOAA/NESDIS (from 2003)

2m temperature; MSU

2LT equivalent lower
tropospheric temperature;
MSU 4 equivalent lower
stratospheric temperature;
2m specific humidity; 2m
relative humidity; 10m
ocean windspeed; 10m
land windspeed

ERA-40, Uppala et
al. 2005

Atmospheric data: Upper-air wind, temperature and humidity from radiosondes, drop-
sondes, pilot balloons, TWERLE balloons (1975-1976) and U H)rofilers (from 1996);
Surface pressure, temperature and humidity from land SYNOP reports; surface pressure,
temperature, humidity and wind from SHIP reports; snow depth from SYNOP reports
and specialised datasets; Temperature- and humidity-sensitive infrared radiances from
VTP (|973—|978-); and HIRS/SSU (from 1979); Flight-level wind and temperature from
aircraft (from 1973); Temperature-sensitive microwave radiances from MSU and AMSU-A
(from 1979); Retrieved winds from 