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Social and political tensions keep on fueling armed conflicts around
the world. Although each conflict is the result of an individual
context-specific mixture of interconnected factors, ethnicity appears
to play a prominent and almost ubiquitous role in many of them.
This overall state of affairs is likely to be exacerbated by anthropo-
genic climate change and in particular climate-related natural disas-
ters. Ethnic divides might serve as predetermined conflict lines in case
of rapidly emerging societal tensions arising from disruptive events
like natural disasters. Here, we hypothesize that climate-related
disaster occurrence enhances armed-conflict outbreak risk in ethni-
cally fractionalized countries. Using event coincidence analysis, we
test this hypothesis based on data on armed-conflict outbreaks and
climate-related natural disasters for the period 1980–2010. Globally,
we find a coincidence rate of 9% regarding armed-conflict outbreak
and disaster occurrence such as heat waves or droughts. Our anal-
ysis also reveals that, during the period in question, about 23% of
conflict outbreaks in ethnically highly fractionalized countries robustly
coincide with climatic calamities. Although we do not report evidence
that climate-related disasters act as direct triggers of armed conflicts,
the disruptive nature of these events seems to play out in ethnically
fractionalized societies in a particularly tragic way. This observation
has important implications for future security policies as several of the
world’smost conflict-prone regions, including North and Central Africa
as well as Central Asia, are both exceptionally vulnerable to anthro-
pogenic climate change and characterized by deep ethnic divides.
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Climate-related natural disasters are among the most impor-
tant environmental stressors affecting the development of

human societies. Climatic changes—and most prominently the
succession of severe natural disasters—have been recognized as
an important potential driver for the collapse of complex soci-
eties (1). However, not the climatological events per se, but so-
cietal vulnerability to its consequences in conjunction with other
stressors has led to societal disintegration, armed conflicts, and
eventually societal collapse during historic and prehistoric times
(2–8). Today, armed conflicts are still among the biggest threats
to human societies, and the identification of underlying pro-
cesses and potential drivers is an area of intense scientific re-
search. Several potential risk enhancement factors for conflict
outbreak have been identified, including poverty (9), income
inequality (10), weak governance (11), or a preexisting history of
conflicts (12). Hypotheses relating to conflict feasibility based on
financial assets from natural resource exploitation have also
been discussed (13, 14). Additionally, there is a growing body of
literature that reports robust indications that ethnic fractional-
ization is one of the key determinants of armed-conflict outbreak
risk (10, 14–17). Although not necessarily rooting in ethnic ten-
sion, nearly two-thirds of all civil wars since 1946 have been fought
along ethnic lines (18). This prominent role of ethnicity in conflicts
might be related to selective access to political power or re-
sources that are often divided along ethnic lines (19), as well as to a
high and rapid ethnic mobilization potential (20) arising from

geographical clustering of ethnic groups and strong interethnic
social ties (21). These two factors may contribute to societal fis-
sures along ethnic boundaries in case of rapidly emerging societal
tension stemming from disruptive events such as natural disasters.
In addition, it seems plausible that ethnic groups can be impacted
very differently by natural disaster occurrence. The prevalent geo-
graphic clustering might be reinforced by other factors such as
ethnically specific livelihoods (e.g., pastoral or riverine communi-
ties) or socioeconomic discrimination resulting in an ethnicity-
dependent differential vulnerability to natural disasters (22).
In our analysis, we investigate the hypothesis that climate-

related natural disasters (in the following referred to as disasters)
enhance the risk of an emergence or violent outbreak of armed
conflicts particularly in ethnically fractionalized societies. We
explicitly address the impact of such disasters in terms of the
resulting economic damage relative to national gross domestic
product (GDP), making use of a high-quality database developed
for commercial purposes of the reinsurance sector (Materials and
Methods). Thereby, we explicitly define disasters with respect to
their economic impact instead of the associated climatic variables.
To test for statistical interrelationships between these damage
events and the timing of armed conflicts, we use event coincidence
analysis (ECA; see refs. 23 and 24, and Fig. 1 and Materials and
Methods), a method that is conceptually related to event syn-
chronization (25) and similar approaches that are widely used in
the neurosciences for studying neuronal spike trains (26). ECA
provides a generally applicable tool for explicitly testing the
statistical significance of interdependences between sequences of
events and has been proven useful in analyzing relations between
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event time series such as regime shifts in African paleoclimate
and the appearance and disappearance of hominin species dur-
ing the Plio-Pleistocene (23), plant growth response to climatic
extremes (27, 28), or the role of flood events as triggers of epi-
demic outbreaks (24).
ECA allows to quantify the strength and robustness of statistical

interrelationships between event series of natural disasters and
armed-conflict outbreaks in two complementary ways (Materials
and Methods): (i) the “risk enhancement test” is based on the
“aggregated precursor coincidence rate” (24) measuring the frac-
tion of conflicts that co-occurred with or were preceded by at least
one disaster exceeding a certain damage level in the same country
and that occurred at most at time ΔT before the conflict started
(Fig. 1). In this case, a robust coincidence rate would indicate that
disaster occurrence is a risk-enhancing factor for armed-conflict
outbreak, based on a retrospective analysis with the condition that
such an outbreak has occurred. (ii) In turn, the “trigger test” relies
on the “aggregated trigger coincidence rate” (24) measuring the
fraction of disasters exceeding a prescribed damage level in a
country group that co-occurred with or were followed by at least
one conflict that occurred at most a time ΔT after the disaster
onset in the same country. This analysis allows to assess more ex-
plicitly than the risk enhancement test whether disasters may act as
a direct trigger to armed-conflict outbreaks in the database under
consideration. Statistical significance is tested with respect to an
appropriately chosen null model (Materials and Methods), and we
vary the economic damage threshold for identifying disasters to test
for the effect of the event severity on the coincidence rate and
significance as well as different disaster types (climatological, me-
teorological, and hydrological disasters; SI Appendix, Table S1).

Besides testing for a global relation between natural disaster
occurrence and armed-conflict outbreak, we performed our
analysis on a group of 50 countries with the highest ethnic frac-
tionalization (EF) following a well-established ethnic fractional-
ization index (29) (results for different group sizes are given in SI
Appendix). Additionally, we grouped countries according to
alternative hypotheses such as multiple conflict outbreaks (CONFL,
see ref. 12) and income inequality measured by the Gini coefficient
(GINI, 50 countries with highest inequality; see Fig. 2 for the
country classification). We furthermore analyzed other country
groupings such as countries with high religious fractionalization,
low levels of overall development, low literacy rates, abundant
absolute poverty, high dependency on agricultural production, high
corruption levels, or countries markedly affected by the El Niño
Southern Oscillation (SI Appendix, Table S3). It is important to
highlight that such a country grouping approach does not allow for
a robust assessment of the relevance of different factors for the risk
of armed-conflict outbreak generally, but rather indicates specific
vulnerability to climate-related natural disaster impacts.

Results
In the following, we present the results of ECA of armed-conflict
outbreaks listed in the UCDP/PRIO conflict dataset (30, 31) with
natural disasters based on the NatCatSERVICE database from
Munich Re over the period from 1980 to 2010 (32). We find no
statistically significant precursor coincidence rates for the risk en-
hancement test at the global scale and all disaster types, except for
the most devastating disasters that caused damage above 10% of
annual country GDP (compare Fig. 3). As the database contains
only about 40 events of this damage class globally (SI Appendix,

Fig. 1. Illustration of the methodological approach of event coincidence analysis for the risk enhancement test based on armed-conflict occurrence. An
armed-conflict outbreak (orange) is counted as coincident with a natural disaster (green), if it co-occurs with or is preceded by such an event exceeding a
prescribed damage threshold within a given coincidence interval ΔT.

Fig. 2. Mapping of countries according to different analysis criteria including countries with more than one conflict (CONFL), the 50 countries with the
highest Gini coefficient (GINI), as well as the 50 countries with the highest ethnic fractionalization (EF).
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Table S2), however, no robust conclusions can be drawn for this
category. To the contrary, our analysis reveals robust precursor
coincidence within the same month for EF largely independent of
the damage threshold resulting in a maximum coincidence rate of
about 23% for all disaster types, which corresponds to 23 conflict
outbreaks in total (see SI Appendix, Table S4, for an overview of
the number of conflict outbreaks per country grouping). This
finding is largely robust with regard to the arbitrarily chosen
size of the country grouping (SI Appendix, Fig. S1). The results for
the GINI, CONFL, as well as alternative country groupings (SI
Appendix, Fig. S2) do not differ substantially from the global as-
sessment. Despite existing linkages between some of the afore-
mentioned factors and EF (compare Fig. 2), none of these country
groupings yields results of similar robustness. In addition, we an-
alyzed immediate and longer-term responses to disaster impacts
(SI Appendix, Fig. S3). Although we find significant precursor
coincidence rates for an extended coincidence interval of up to
3 months before the conflict outbreak, our analysis does not reveal
significant effects for longer intervals.
A different picture emerges when different types of disasters

are treated separately (see SI Appendix, Table S1, for further
details on the event type classification). About 9% of all global
armed-conflict outbreaks (21 in total) significantly coincide with
a climatological disaster (drought or heat wave) in the same
country even without applying a disaster damage threshold (7%
for the EF country grouping). For hydrological events, only those
with strongest impact yield statistically significant results, albeit
at a low precursor coincidence rate. Also, we only find significant
precursor coincidence for meteorological disasters for EF with a
low coincidence rate.
The same analysis has been performed for the trigger test

quantifying to what degree armed-conflict outbreaks coincide with
or follow disasters (Fig. 4). Again, we find the signal for coinci-
dences within the same month and climatological disasters to be
most robust with the largest statistically significant coincidence
rate for the EF country group. However, trigger coincidences have
only been identified for 2.5% of all climatological events and
about 2% of all disasters above a 1% relative GDP threshold for
the EF country grouping and are not robust at the global scale.

Discussion
The question whether or not climate-related factors have signifi-
cantly contributed to recent armed-conflict outbreaks has been
heavily disputed in the scientific literature (33–38). Although a
sequence of studies has suggested that a large number of out-
breaks of armed conflicts in modern as well as premodern times
have been associated with climatic variability (33, 36, 37, 39–41),
the robustness of these findings and underlying mechanisms are
controversially discussed (10, 37, 42, 43). Other literature that
assessed the influence of climate signals on armed-conflict out-
break risk did not report a robust connection (9, 44, 45).
A clear shortcoming of most studies investigating the relation

between climate change and armed conflicts is that they focus
solely on meteorological indices such as temperature or pre-
cipitation time series (9, 39–42, 46), thereby neglecting the cru-
cial importance of vulnerability and exposure for the impacts of
climate hazards (35, 47). This might be one reason for the sub-
stantial disagreement on the matter in the literature. Moving
beyond purely meteorological indices toward the development of
composite indices accounting for vulnerability and exposure to
climate change, as well as conflict risk provides a promising way
forward to reconcile this debate (48, 49).
Our ECA approach, based on disaster occurrence characterized

by the economic impact of a climate-related event instead of a
meteorological index, accounts to some extent for the effects of
vulnerability and exposure. However, some potential caveats need
to be considered. Economic losses as measured relative to GDP are
of limited relevance in assessing disaster impacts in the most vul-
nerable countries, as disaster-related losses are difficult to quantify
and loss of lives and livelihoods may substantially outweigh eco-
nomic losses. At the same time, damages by disasters that are not
directly affecting economic assets but rather living conditions and
subsistence agriculture, such as droughts, are difficult to quantify in
economic terms (32). These shortcomings of the economic indica-
tors may explain why we find robust significant relationships down
to low damage threshold levels as well as the apparent insensitivity
to the threshold level for climatological events (compare Fig. 3). A
second shortcoming is associated with the country-level resolution
of our study that can impede the assessment of potential relations

Fig. 3. Results of ECA for the risk enhancement test: the percentage of armed-conflict outbreaks that coincide with a climate-related natural disaster within
the same month (Materials and Methods). We resolve different country groupings, disaster types (color coding), and disaster damage levels. Damage levels
are indicated by segments of the individual bars and are assessed relative to the country’s GDP in the year of the event. Segmenting starts with zero threshold
from the top and the number of segments with nonzero coincidences can differ between country groupings and disaster types. Filled segments indicate
coincidence rates that are significant at the 95% level. Results shown are for coincidences between events occurring within the same month (see SI Appendix,
Fig. S3 for results for coincidence intervals of up to 12 months).
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between disasters and armed-conflict outbreaks happening in dif-
ferent parts of the country. Although a higher resolution would
indeed improve our analysis, the current country aggregation does
not undermine the validity of our test as a larger number of pos-
sibly disconnected disasters and armed-conflict outbreaks on a
country level will only lead to higher significance thresholds (Ma-
terials and Methods) and, consequently, to a more conservative test.
The results for the different country groupings depend not only on

the ad hoc selection of group sizes (although our findings for EF are
largely robust for different group sizes; compare SI Appendix, Fig.
S1) but also on the index chosen. Although widely used, the classi-
fication following general indicators such as GINI or EF has led
to inconsistent results in the conflict literature and it has been shown
that theoretically informed country profiles combining multiple
factors and relating them to dimensions of power sharing are much
better predictors of armed-conflict outbreaks (10). Specifically, dis-
criminatory political and power-sharing systems along ethnic
boundaries have been found to be of key relevance (10). Thereby, a
refinement of our analysis based on indices reflecting ethnic in-
clusiveness in power sharing might be promising for further research.
Commonly, high ethnic separation on a country level coincides

with other potential sources of conflict such as economic in-
equality or poverty, which makes it difficult to disentangle their
specific effects (50). However, the results for alternative group-
ings (e.g., for inequality, poverty, and conflict proneness) are
much less robust than those for EF, despite a substantial overlap
in the actual country groupings (compare Fig. 2). Although the
country grouping approach as applied here does not allow for a
direct quantification of the driver’s importance, our results imply
that the mechanisms specific to EF and conflict outbreak dis-
cussed above may play a significant role for armed-conflict out-
break following a natural disaster (18). Thereby, it is not the
domain-specific factors, EF, or natural disasters occurrence
alone, but their interplay that results in enhanced risk of armed-
conflict outbreak. Besides our robust findings of risk enhancement,
we report no further indications that natural disasters are causing
armed-conflict outbreaks in a more direct manner (based on the
trigger test). Thereby, our results do not support attempts of single-
factor attribution of conflict outbreaks to disaster occurrence.

Unlike development-related factors such as poverty and in-
equality, ethnic fractionalization of societies cannot be overcome via
economic development alone. As a consequence, country-specific
risks may prevail over the next decades independently of the
countries’ state of development, if no robust progress in ethnic in-
clusiveness regarding power sharing is achieved (10). Among the
most fractionalized countries are many African as well as Central
Asian nations (compare Fig. 2), which makes these regions poten-
tial hot spots of armed-conflict outbreak risk enhancement due to
climate-related natural disasters. Climate projections indicate a
substantial increase in extreme event hazards in these regions and
most of the affected countries are also characterized by high vul-
nerability and low adaptive capacity, which renders them particu-
larly susceptible to high-impact climate-related natural disasters
(51, 52). Projections of overall conflict risk up to 2050 based on a
multifactorial analysis also find these regions to be particularly
endangered (12), which highlights the relevance of our findings
in the wider context of conflict prevention and development.
The robust finding of armed-conflict outbreak risk enhancement

for climatological events globally points towards increased risks due
to a projected drying trend in already drought-prone regions such as
Northern Africa and the Levant (53). Recent analyses of the soci-
etal consequences of droughts in Syria and Somalia indicate that
such climatological events may have already contributed to armed-
conflict outbreaks or sustained conflicts in both countries (54–
57). Similarly, a prolonged drought might have contributed
negatively to the ongoing conflicts in Afghanistan (58). Further
destabilization of Northern Africa and the Levant may have
widespread effects by triggering migration flows to neighboring
countries and remote migrant destinations such as the European
Union. Although not highly ethnically fractionalized following the
ad hoc threshold classification applied here, ethnic identities also
appear to play a prominent role in the ongoing civil wars in Syria
and Iraq (18). It is clear that the roots of these conflicts, as for
armed conflicts in general, are case specific and not directly as-
sociated with climate-related natural disasters. Nevertheless, such
disruptive events have the potential to amplify already existing
societal tensions and stressors and thus to further destabilize
several of the world’s most conflict-prone regions (12, 31).

Fig. 4. Results of ECA for the trigger test based on the occurrence of disasters that coincide with an armed-conflict outbreak within the same month
(Materials and Methods). Results for four different country groupings are resolved in four individual panels, whereas results for different disaster types are
indicated by the color coding. Coincidence rates are displayed for different damage threshold levels by individual bars with increasing damage threshold from
left to right. For some threshold levels, the trigger coincidence rate is zero. Filled segments indicate coincidence rates that are significant at the 95% level.
Note that the coincidence rates are one order of magnitude smaller than for the risk enhancement test depicted in Fig. 3.
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Materials and Methods
Data Sources.
Natural disaster database. The analysis of disaster damages is based on the
NatCatSERVICE database from Munich Re (32) developed for the private
sector, which is available upon request from the Munich Re NatCatSERVICE.
This database provides state-of-the-art estimates of economic damages
connected to natural hazards. The database comprises the 1980–2010 period
and gives estimates for total economic damages based on internal estimates
and third-party sources. It contains about 18,000 climate-related events for that
period. Damage events are classified according to the nature of the underlying
natural hazard and include also geophysical events such as earthquakes, which
are excluded from our analysis (see SI Appendix, Table S1 for an overview on
the climate-related natural hazards and their classification). To account for
country-specific economic conditions, the absolute damages are considered
relative to the countries’ annual GDP (International Monetary Fund database;
https://www.imf.org/external/data.htm), which allows for the analysis of cli-
mate-related natural hazards dependent on their destructiveness in economic
terms. All damages are deflated to 2010 US dollars.
Armed-conflict database. Data on armed conflicts are taken from the openly
available UCDP/PRIO Armed Conflict Dataset (30, 31) (www.pcr.uu.se/research/
ucdp/datasets/ucdp_prio_armed_conflict_dataset/). This dataset counts all in-
cidences with more than 25 battle-related deaths globally, both interstate and
intrastate conflicts. Conflict outbreaks are counted on a yearly basis, for each
dyad of conflicting parties (either interstate or intrastate). For ongoing con-
flicts, each new outbreak is included when preceded by at least 24 months of
nonconflict. Interstate conflicts are treated separately and coincidences are
counted if at least one of the countries has been hit by a disaster within the
coincidence interval and above the damage threshold. Conflicts involving
multiple countries (such as US-led coalitions in Afghanistan and Iraq in the
2000s) are excluded. The dataset includes 241 conflict outbreaks over the
1980–2010 period for both interstate and intrastate conflicts globally.
Country classification. The country classification in terms of ethnic as well as
religious fractionalization is based on indices developed by Alesina et al. (29)
and the Gini coefficient is based on World Bank data and averaged over the
1980–2010 period (World Bank database; data.worldbank.org/indicator/).
For both indices, the 50 countries with the highest values are used. For
further country classifications, see SI Appendix, Table S3.

Method Description: ECA. ECA is a method tailored for quantifying and testing
statistical interrelationships between event series while allowing to specify ex-
plicitly the coincidence interval, lag, and directionality (in terms of precursor and
trigger coincidences) of these interrelationships (24). In this study, we perform
two coincidence tests: (i) the risk enhancement test, which is based on armed-
conflict outbreak and tests for coincidences of natural disasters co-occurring
with or preceding conflict events, and (ii) the trigger test based on climate-
related natural disaster occurrence, which tests for coincidences with armed-
conflict outbreaks following or co-occurring with a disaster event (24). Both
tests differ with regard to the considered set of countries and the definition of
the coincidence interval, but otherwise the same methodology is applied. We
analyze countrywise coincidences between armed-conflict outbreaks at times
tc,ki (i= 1, . . . ,Nc,k) and disaster events at times td,kj ð«Þ (j= 1, . . . ,Nd,kð«Þ) within
a coincidence interval ΔT (Fig. 1) for a group of countries G, where k∈G is a
country index. Nc,k and Nd,kð«Þ denote the numbers of armed conflicts and
disasters for a given country k, respectively. The disaster events are filtered by a
damage threshold « measured in units relative to annual GDP.

The risk enhancement test is based on the aggregated precursor coincidence
rate rGp ðΔT , «Þ (24) measuring the fraction of conflicts in country group G that
were preceded by at least one disaster of the strength of at least « in the same
country and that occurred at most at time ΔT before the conflict started:

rGp ðΔT , «Þ=
P

k∈G
PNc,k

i=1 Θ
hPNd,k ð«Þ

j=1 1½0,ΔT �
�
tc,ki − td,kj ð«Þ

�i
P

k∈GNc,k
, [1]

where Θð·Þ is the Heaviside function [here defined as ΘðxÞ= 0 for x ≤0 and
ΘðxÞ= 1 otherwise] and 1Ið·Þ, the indicator function of the interval I [defined

as 1IðxÞ= 1 for x ∈ I and 1IðxÞ= 0 otherwise]. Note that, according to this
definition, multiple disasters preceding a given conflict within the co-
incidence interval are counted only once. In turn, the trigger test is based on
computing aggregated trigger coincidence rates (24):

rGt ðΔT , «Þ=
P

k∈G
PNd,k ð«Þ

j=1 Θ
hPNc,k

i=1 1½0,ΔT �
�
tc,ki − td,kj ð«Þ

�i
P

k∈GNd,kð«Þ , [2]

measuring the fraction of disasters of a strength of at least « in country group
G that were followed by at least one conflict that occurred at most a time ΔT
after the disaster onset in the same country.

The temporal resolution of the analysis is limited to monthly values, which
accounts for both dating uncertainties in the conflict database as well as in
disaster onsets (as in, e.g., droughts). For temporally extended disaster events,
the start date is used. Although certain events such as heat waves and in
particular droughts can last for several months, an analysis using the end
dates of such temporally extended disasters (not shown) does not exhibit
significant coincidence rates. To assess the statistical robustness of our
findings, independent Poisson processes are assumed for both the disaster as
well as the conflict outbreak event series at the individual country level,
conserving the event rates Nc,k=T and Nd,kð«Þ=T, respectively (23). Here,
T denotes the total time span covered by both event series. The corresponding
null hypothesis (NH) to be tested is that the observed coincidence rates for a
group of countries G occur due to chance alone. To perform this test, Monte
Carlo simulation is applied for generating M pairs of surrogate event series.
Event rates for each country k∈G are conserved by uniformly and in-
dependently drawing Nc,k ,Nd,kð«Þ event timings from the considered period
1980–2010 to compute a test distribution of coincidence rates pðrGÞ using
Eqs. 1 and 2. For each considered country grouping, M= 1,000 ensemble mem-
bers are generated and a 95% significance level is applied for the rejection of the
NH of coincidence rates arising due to chance alone. No significance assessments
are made, if the absolute number of coincidences counted is smaller than 2.

A variety of approaches related to ECA is applied in the neurosciences for
investigating statistical interrelationships between neuronal spike trains (26).
Among others, event synchronization (25) has been widely used for studying
climatological extreme events in various contexts (60, 61). Donges et al. (24)
provide amore detailed discussion of ECA in comparisonwith related approaches.

It should be noted that the statistically significant coincidence rates observed
in this study could in principle be due to a hidden common cause that affects the
timing of both climate-relateddisasters and armed-conflict outbreaks. Although
theexistenceof such a root cause cannot be ruledout apriori, there is noobvious
hypothesis available on what a hidden common cause or common driver could
be in the setting of our study. If event or other data on candidate processes is
available, extensions of ECA such as conditional ECA could be applied to study
common driver effects (62). Alternatively, recurrence-based methods proposed
for discovering hidden common causes in the case of bivariate standard time
series (63) could be adapted for event time series in future research.

The software (Python scripts) and openly available data used for performing
the analysis presented in this paper have been made available at www.pik-
potsdam.de/research/publications/pnas/Schleussner_et_al_2016_PNAS_scripts.zip.
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